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The Linear and Self-Consistent Nonlinear Theory
of the Electron Cyclotron Maser Instability

P. SPRANGLE AND A. T. DROBOT

Abstract—In this paper the linear and nonlinear theory of the

electron cyclotron maser instability is considered. The configuration used

to study the maser instability consists of relativistic electrons. gyrating

about and drifting along a nniform magnetic field within a parallel plate

waveguide. Relativistic effects associated with the gyrating electrons are

responsible for excitation of the transverse electric mode in the waveguide.

Linear theory shows that the growth rate maximizes when the axial beam

velocity coincides with the axial wave group velocity of the excited

electromagnetic wave. This allows ns to perform the nonlinear analysis in

a frame where both the axial wave number and axial beam velocity

vanish. We have fonnd that the maser instability exists only if the per-

pendicular beam energy exceeds a threshold value. Our analysis also

describes the temporal nonlinear evolution of the field amplitude and

frequency of a single excited wave. The nonlinear wave dynamics are

self-consistently determined from the nonlinear particle orbits through

the force and wave equations. The nonlinear analysis shows that there are

two possible mechanisms for the saturation of the nnstable wave:

1) depletion of the available free energy associated with the rotating

particles and 2) phase trapping of the gyrating electrons in the wave.

The initial beam parameters determine which of the two mechanisms is

responsible for saturation. Competition between the two saturation

mechanisms leads to a peaking in the energy conversion eficiency as a

function of beam energy. Numerical results of the nonlinear formalism

show that energy conversion efficiencies from the particles to the wave

can be as high as 60 percent in the beam frame. Furthermore, by appro-

priately contouring the external magnetic field, among other things,

efficiencies as high as 70 percent can be realized.

I. INTRODUCTION

I N THE cyclotron maser instability electromagnetic

radiation is generated by relativistic electrons gyrating

about an external magnetic field. The bunching process in

the maser instability is a relativistic effect due to the energy-

dependent electron cyclotron frequency. The excited wave

frequency is near the Doppler-shifted electron cyclotron

frequency of the gyrating electrons. The free energy for the

maser instability resides in the rotational energy of the

electrons. To make this source of energy from a streaming

electron beam available for the generation of radiation, a

redist,ribution of electron energy is needed. For example,

converting streaming to rotational energy can be accom-

plished by propagating the electron beam through a

spatially varying external magnetic field. This conversion

process is the classical equivalent of producing inverted

population levels in molecular masers by pumping.

The electron cyclotron maser instability is particularly

promising for efficient generation of millimeter and sub-
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millimeter radiation. In this part of the electromagnetic

spectrum more conventional devices are severely limited in

both power and efficiency. Such devices as the traveling

wave tube or magnetron rely on a slow wave structure for

their operation. The radiation wavelength from these

devices is typically on the order of the structure period.

Power density as well as voltage breakdown considerations

place a lower limit on the dimensions of the structure

depending on the efficiency and radiated power require-

ments. Therefore, these slow wave devices are not par-

ticularly suited for efficient generation of large fluxes of

radiation at millimeter and submillimeter wavelengths. The

electron cyclotron maser mechanism, on the other hand,

does not rely on the fine structure of a waveguide or

cavity, and thus efficient operation at millimeter and

submillimeter wavelengths is possible.

The linear mechanism of the cyclotron maser was first

proposed by Twiss [1] classically and later quantum

mechanically by Schneider [2]. Shortly after the work of

Twiss, Gaponov published a paper on the classical theory

of the cyclotron maser [3]. In 1959, Pantell published what

was perhaps the first experimental work involving the

electron cyclotron maser mechanism [4]. In this experiment

radiation at 2.5–4.0 GHz was produced from a l-kV 3-~P

electron. beam. Pantell suggested that the radiation was

caused by the coupling of the TEI ~ waveguide mode to the

backward traveling cyclotron wave on the magnetized

beam. It was Hirshfield and Wachtel who performed the

first experiment that definitely confirmed the existence of

the electron cyclotron maser mechanism [5]. Apparently,

because of a lack of understanding of the nonlinear

dynamics, the observed efficiencies in the initial experiments

were low, ~ 2 percent. In this early work the cyclotron

maser was operated both as an oscillator and as an amplifier

at millimeter wavelengths [5]–[9]. The radiated power

achieved in these experiments was as high as 1 kW [8].

Nonpulsed low-current electron beams were used through-

out the early experiments.

The advent of intense pulsed relativistic electron beams

has renewed interest in the cyclotron maser instability as a

source of high-power microwave radiation. These intense

electron beams use a field emission diode and typically

carry a current of s 100 kA, a voltage of ~ 5 MeV, and last

for approximately 50 ns. Microwave radiation at multi-

megawatt levels [10] and as high as 1 GW [1 I] has been

produced using these intense relativistic electron beams. By

operating the cyclotron maser as a single-stage amplifier, a

17-dB gain was obtained [12]. In general, the emitted

radiation was narrow band with a coherence time >50 ns,
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and was also spatially coherent [13]. None of the experi-

ments using pulsed intense electron beams attained

efficiencies greater than about 2 percent. Our analysis shows

that there are a number of reasons for the observed low

efficiencies with intense relativistic electron beams.

The highest reported efficiencies with a cyclotron maser

device were obtained in the Soviet Union using thermionic

diodes [14], [15]. In the experiments by Zaytsev et al. [14],

12-kW CW at 2.78 mm was reported using the fundamental

cyclotron mode. Experimental efficiencies in this case were

31 percent. Interaction at the second cyclotron harmonic

produced an output power of 1.5 kW CW at 0.92 mm with

an efficiency of 6.2 percent. Using the secondl cyclotron

harmonic, Kisel’ et al. [15] obtained output powers of

10 kW CW at 8.9 mm with efficiencies of 40 percent. In the

pulsed electron mode, power levels of 30 kW at 43 percent

efficiency were reported.

Work on the linear theory of the cyclotron maser shows

that the instability is due to the coupling of the supra-

Iuminous TE waveguide mode and a beam cyclotron mode

[10], [16]-[19]. The instability may be either absolute or
convective in nature. For a review of the theory on excited

nonlinear oscillators as applied to the cyclotron maser, see

the article by Gaponov et al. [20].

To our knowledge, the first nonlinear evaluation of the

electron cyclotron maser mechanism involved numerical

integration of the electron orbits in fields of either constant

amplitude and/or constant frequency [16], [21] -[25].

These nonlinear theories do not fully treat the particles and

wave dynamics in an inherently self-consistent manner.

In this paper a comprehensive study of the self-consistent

nonlinear evolution of the electron cyclotron maser

instability is presented. We have included both a time-

dependent frequency shift and a time-dependent field

amplitude in our analysis. A rather simple physical picture

of the nonlinear behavior of this instability shows that

there are two mechanisms responsible for wave saturation.

The analysis is self-consistent in that the particle and wave

dynamics are treated as a unit. Our parameter study

indicates that the maser instability can be an efficient

mechanism for the production of high-power radiation,

particularly at millimeter and submillimeter wavelengths.

Saturation efficiencies at the fundamental waveguide mode

and cyclotron mode are obtained. A method of externally

controlling the saturation process, and there by further

improving conversion efficiencies, is discussed.

The physical mechanism of the electron cyclotron maser

is described in Section II. Properties of the linear dispersion

relation are discussed in Section III. Here simple expressions

for the linear growth rate and frequency shift are obtained.

The linear theory indicates that the growth rate maximizes

when the axial beam velocity is equal to the group velocity
of the excited wave. This fact can be used to simplify the

analysis by performing all calculations in the beam frame

which now coincides with the cutoff frame where the axial

wave number k. vanishes. The results are then transformed

back to the laboratory frame. In Section IV we derive the

equations for the nonlinear growth rate and frequency

shift of the excited wave. The nonlinear single wave

formalism treats both the particle and wave dynamics

self-consistently. The equivalence of our temporal model

with the steady-state spatial growth of a wave in an

amplifier is pointed out. A number of simplifying assump-

tions, such as the single wave approximation and neglect of

initial beam temperature and space charge effects, have been

made in our analysis. The conditions for the validity of

these approximations are discussed in Section V. Section VI

describes the two nonlinear saturation processes of the

cyclotron maser instability. There we show that the

depletion of free energy and/or particle phase trapping is

responsible for wave saturation. The dominant mechanism

depends on the initial choice of beam parameters. Simple

analytic expressions for the field amplitude at saturation are

obtained. From the slow time scale orbit equations we

obtain a constant of the motion for a fixed amplitude and

frequency field. This constant is used to examine the

nonlinear particle orbits in phase space. Section VII contains

the numerical results of our formalism for a wide range of

beam parameters. These results include field amplitudes and

efficiencies at saturation. Comparison of these results with

the analytic expressions given in Section VI is made.

Methods for improving the efficiency at saturation are also

discussed and examples given. Section VIII contains a brief

discussion of our results as well as possible applications for

the cyclotron maser. The low experimental efficiencies with

intense relativistic electron beams for the cyclotron maser

are discussed in the light of our theoretical results. A

detailed example showing how our results can be applied to

practical situations to estimate power efficiencies and

levels of the radiation field is given. In Appendix A we show

that the linear dispersion relation can be recovered from the

nonlinear formalism. Because our analysis is performed in

the beam cutoff frame, we include a derivation of the

efficiency transformation from the beam frame to the

laboratory frame in Appendix B.

II. PHYSICAL MECHANISM

Insight into the physical mechanism responsible for the

electron cyclotron maser instability can be obtained from

the particle trajectories shown in Fig. 1(a) and (b). This

figure shows the orbit dynamics of sample electrons initially

uniformly distributed along a gyro orbit. The electrons are

rotating in the counter clockwise direction about a uniform

and constant magnetic field Boi?z. Without loss of generality,

we assume the electron velocity in the z direction to be

zero. The initial radius of the sample electron ring is the

Larmor radius ro~ = ooJ(f20/yol) where Vol is the initial

perpendicular velocity, Cl. = lelBo/nzoc is the nonrelativistic

cyclotron frequency, and YOL = (1 – IJOL2/C2)-1’2 is the
relativistic factor.

The introduction of a small constant amplitude electric

field E,(t) = co cos (coot)?,, as shown in Fig. l(a), will

alter the particle orbits. We first examine the particle

trajectories when the frequency of the electric field is equal

to the initial relativistic cyclotron frequency CDo= !i20/yol.
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Fig. 1. The mechanism responsible for the electron cyclotron maser
illustrated by orbits of test particles in velocity space in the presence
of a small external field. (a) Initial particle positions. (b) Bunched
particles after several cycles.

The time rate of change of the particle energy is d&Jdt =
– leloY(t)EY(t) where o,(t) is the y component of particle

velocity. With the initial choice of field direction shown in

Fig. l(a), particles 8, 1, and 2 will lose energy and tend to

spiral inward. The relativistic cyclotron frequency of these

particles will increase, since yl decreases, and their phase

will tend to slip ahead of the wave. Particles 4, 5, and 6, on

the other hand, will gain energy, their cyclotron frequency

will decrease, and they will tend to spiral outward. The

phase of these particles will tend to slip behind the wave.

After an integral number of wave periods, the particles will

become bunched around the positive y axis. Particle

bunching is, therefore, caused by relativistic effects, since

the rotational frequency of the electrons is energy dependent.

To obtain a net exchange of energy between the particles

and wave, rno must be slightly greater than !i20/yOl. If

COO> %/yOl, the particles on the average traverse a
coordinate space angle less than 27cin a wave period 27t/coo.

All the particles will then slip behind the wave, and the

distribution of particles after an integral number of wave
periods will be bunched in the upper half plane as shown

in Fig. 1(b). As a result of the phase slippage between the

particles and the field, the net kinetic energy of the ensemble

of particles decreases. Conservation of total energy implies

that the field amplitude increases, resulting in instability. If

co. remains greater than f20/yl, the particles will continue to

slip behind the wave.

Depending on the initial beam parameters, the group of

bunched beam particles may 1) continue to slip behind the

wave, or 2) initially slip behind the wave, reverse itself, and

begi~ to oscillate about the positive y axis. In either case,

the bunched particles will eventually appear in the lower

half of the transverse plane after an integral number of wave

CONDUCTING x B$z
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Fig. 2. The electron cyclotron maser configuration in plane geometry.

periods. When this occurs, the particles will gain energy and

the wave amplitude will begin to decrease.

111. LINEAR THEORY .

Using the Maxwell–Vlasov equations, the linear theory

of the electron cyclotron maser instability has been derived

in both cylindrical [IO] and Cartesian geometry [19]. The

electron beam and waveguide configuration employed in

[19] and shown in Fig. 2 is basically the same model used

in the present nonlinear analysis. In Fig. 2 a beam of

gyrating and drifting particles is assumed to have the same

perpendicular velocity UOL and parallel velocity VOII with

respect to the applied axial magnetic field BO. The guiding

centers of the particles lie midway between the two

conducting plates. The system of particles and fields is

assumed independent of the spatial y variable. The field

components within the waveguide are those of a TEOMmode

(i.e., EY, B=, and BX are the only nonvanishing field

components). The functional dependence of the fields on z

and thas the form exp (i(koz — w)). The linear dispersion

relation in the laboratory frame for the above configuration

is

(02 — C2(ko2 + kn2) = &f@b2/YO)

“[ (~ – ~ouoll)Qnt _ po.’(d – C’koz)wn,

(co – ko% ,, – 1s43/70) (0 – ‘b-b,, – 1WYO)21
(1)

where k“ = rrn/2a is the perpendicular wave number,

n = 1,2,3,.”. is the waveguide mode number, 61. =

(1 + (– 1)”+ ‘), ~~z = 4z]elao/nzoa is the modified plasma

frequency, O. is the surface charge density of the beam in

the x–y plane, 1 = 1,2,3 is the magnetic harmonic number,

YO = (1 — OO112/C2— uoL2/c2)– 1’2, QO = lell?o/wrOc, flol =
voL/c, Q.l = X.(12/X.2 – 1) d(.J1(xJ)2/dx, W., = (dJt(xn)/

tix.)’, x. = /301ckJ(KLJyo), and .ll is the Bessel function of

order 1. If n + 1 is odd, the TEon mode is stable since the

right-hand side of (1) vanishes [26]. The first term in the

bracket on the right-hand side of (1) is always stabilizing

while t~e second term is always destabilizing. Furthermore,

the frequency of the unstable wave in the rest frame of

the electrons is slightly greater than the cyclotron frequency,

YO(OJ– ~OVOI) z Qo. We have seen in Section 11 that this
requirement is necessary for a phase slippage to occur

between the particles and field. It is clear from the dispersion

relationship in (1) that the maximum growth rate of the

modified TEon mode occurs for frequencies and wave

numbers near the intersection of the vacuum waveguide
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mode Oz — c2(k02 + k.z) = O, and the cyclotron mode

co – kouoll – K20/y0 = O. When the perpendicular velocity

of the particles oO~vanishes, the cyclotron wave is a positive

energy wave. Since the waveguide mode is also a positive

energy wave, there can be no instability for OOL = O. If,

however, 001 # O, the cyclotron mode splits into a positive

and negative energy polarity wave as can be seen from the

fact that (co – kOUO,,– lf20/yO)2 appears in the denominator
of the destabilizing term of (l). The coupling of the negative

energy cyclotron wave and positive energy waveguide mode

is responsible for the instability. In the limit of vanishing

beam density cob ~ O, or vanishing perpendicular velocity

Uol + O, the opposite energy polarity cyclotron waves co-

alesce and become degenerate.

Seeking a solution to (1) near the intersection of the

modes, we set co = O. + C$coowhere IdoOl << 0. and co. =

C(lcoz + lcn2)112 = lcovo,, + lQO/yo. Substituting co = @o +

&o. into (1) and keeping terms to order (doo)3 yields the

following relation:

c73c00 – 3A2mO&oo + 3Znl A2W0 = O (2)

where

AOO = (lQO/yO(dHtOb2/(6y O~O))QHl)112

and

Z.l = (x#)2(Wtil/QHl) (lQO/yO).

The solutions of (2) yield complex roots when Znl >

(2/3)A00. This condition can be stated as a threshold

condition for instability, requiring that the perpendicular

velocity be greater than a critical value [27],

BO1 > Bl,crit

where

P.L,crit = l(%/YO)(Q.JVVnt) l’2

[(2/27)an,m~2Qn,/(YomolQo/yo)]l/4/ck..

At the critical value of ~1 the stabilizing and destabilizing

terms in (1) just balance each other. The beam has no free

energy available for driving the instability when yol =

yl,C,i,, where ~l,C~it = (1 – fl~,C,it)- 1/2. The roots of (2)

can be easdy evaluated m two regimes: 1) DO1 > fll,C~i ~,

and 2) flol >> fll,C,iV In the first regime, the perpendicular

energy of the beam is close to the critical value and the

saturation is caused by the depletion of free energy. In the

second regime, the perpendicular energy of the beam is well

above the critical value and, as we will show in Section VI,

the saturation mechanism for the instability is phase

trapping of the particles by the excited wave.

Case 1)

Here, ~ol z ~l,CF,, and the second term on the right-hand

side of (1) is larger but comparable to the first term. The
linear frequency shift and growth rate take the form

Ao.)i = Re (tino)t = ((3/2)ZHl A2coo)l/3 % Am. (3a)

Im (&oo)i

3- ‘/2(AOJo)213(3Z~ l/2) -213((3Z~1/2)2 – A2coO)’/2

(Z~l AOO – 2 A2mo/3)’12. (3b)
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This case is for YOL = 1.2, co~i~~l = 0.0500, a~~= ck. = lQ/yOl,
andl=n=l.

The growth rate for this case is proportional to the fourth

root of the surface charge density.

Case 2)

Here, ~ol >> ~1 ,C,i, and the second term on the right-hand

side of(2) dominates. The linear frequency shift and growth

rate of the wave are

Acoii = Re (dcoo)ii = (1/2) (3ZHl A2coo)113 (4a)

rii = Im (bo),i = 31j2/2(3Z.1 A200)113. (4b)

The growth rate for this case is proportional to the third

root of the surface charge density Oo.

The condition that the nth waveguide mode and the lth

synchronous mode intersect on the dispersion curve limits

the value of Xn. It is easy to show that x. is bounded by

O < x. < 1. Fig. 3 depicts the functions W.l and Q.l as

functions of x. for 1 = 1, 2, 3, and 4. Fig. 4 shows the

dispersion diagram for the cyclotron maser instability when

Vo11= O, @o = ckn = lQo/yo and 1 = n = 1. Note that the

cyclotron mode splits into two branches of negative and

positive energy polarity. The negative energy cyclotron

mode couples to the positive energy TE guide mode

resulting in an instability. The growth rate maximizes at

k. = O. If the cyclotron frequency were greater than the

guide cutoff frequency f20/yol > ck., the growth rate
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1.2 zero. The electric field, in the cutoff frame, of the vacuum

waveguide mode has the form

I
_EY(x,t) = – EO(t) cos (coot + a(t)) sin (k.(x – a)) (5a)

1,1
~
~ where k. = nn/(2a) and n is a positive integer such that
>+
ho EY(x,t) satisfies the appropriate boundary conditions at
‘z~ x = + a. In (5a) the frequency OJOis a constant, while the

1.0 amplitude EO(t) and the frequency shift 13a(t)/dt are weak

functions of time (e.g., d in (EO(t))/dt, da(t)/i?t << coo). The

amplitude Eo(t) can be expressed as

0.9

J

t

.1.0 0 1,0 Eo(t ) = 20 exp r(t’) d’ (5b)

(cko)/(cknl_ o

Fig. 5, Contours of the growth rate for the cyclotron maser instability where e. is the initial field amplitude and r(t) is the time-
versus the parallel wave number and the cyclotron frequency. This
case is for YO~ = 1.2 and cob/~~1 = 0.050., where CDO= ckn and

dependent growth rate. We note that in the linear regime of

l=n=l. the instability the frequency shift and growth rate are

constant and equal to their linear values dIZ(t)/dt = Aco~

and r(t) = r~.

would have two peaks at Ikol > 0, symmetric about the Associated with the electric field in (5a) is the vector

k. = O axis. The maximum growth rate for f20/yo& > ck~ potential AY(x,t) given by

is always less than the maximum growth rate for f20/yol =

ck.. This can be seen in Fig. 5, where growth rate contours
A,(x,t) = (c/coO){(l – d/(oO)EO sin (coot + u)

are shown as functions of (!20/yol)/(ckJ and (cko/ck.). We + (~o/coo) cos (coot + u)} sin (k.(x – a)) (6)

note that, in general, the growth rate is maximum when the
where AY(x,t) is valid to first order in the small parameters

wave group velocity v~ equals the axial beam velocity V. II.

This becomes apparent if we transform to the beam frame
r(t)/coo and c?(t)/aro. The time evolution of EO(t) and a(t)

is determined by the particle current density JY(x,t) through
(UO[l = O) and note that for fixed /301 and k., the growth the wave equation for ~ (x ~,.

rate is largest when k. = O (i.e., when COO= lf20/y0 = ck~). Y)”

At k. = O, the group velocity vanishes and, therefore, (az/a.xz– c“ a2/&2)Au= –47cc - ‘Jv. (7)

rJg = 00 [1 = Oin this frame. Since both o~ and Do,, transform
Substituting (6) into the wave equation and keeping only

in the same way, the growth rate maximizes when Va = V.,,
lowest order terms in the small parameters r/coO and &/o.)O

in all frames.
yields the relation

IV. NONLINEAR FORMALISM
{(coo’ – c2k.2 + (c21c.2 + 002)(&/@o))Eo sin (mot + a)

In this section the basic equations governing the nonlinear – (c’k.z + coo2)(~o/coo) cos (coot + a)} sin (kH(x – a))

behavior of the electron cyclotron maser instability are -4mnoJy(x,t). (8)
derived using a single wave model. The validity of the single

.

wave approach will be examined in Section V. The current density for a discrete set of particles is given by

In our procedure, we express the nonlinear dynamics of a

single wave in terms of an ensemble average of the nonlinear

particle orbits. The particle orbits are related to the fields

through the relativistic Lorentz force equations. The

resulting wave and force equations are then numerically

solved to obtain the self-consistent behavior of the particles

and the field. This analysis describes the nonlinear evolution
of the field amplitude and frequency as a function of time.

The beam and waveguide configuration shown in Fig. 2 is

chosen as our basic model.

We have noted in Section 111 that the linear growth rate

for the excited TEO~ mode maximizes when the axial beam

velocity and the wave group velocity are equal. We chose

to analyze this situation since we are interested in the

regime of maximum wave growth. Furthermore, for

convenience, we transform to a frame in which both the

axial beam velocity and wave group velocity vanish. Since

the group velocity is now zero in this frame (cutoff frame),

we note that the axial wave number of the wave is also

JY(x,t) = - Iel”o~ ,~ U,(@i,t)a(x - x(~i,t)) (9)

where 00 is the surface number density in the y–z plane, N

is the number of particles on a gyro radius, @; is the initial

velocity space angle of the ith particle measured with

respect to the x axis, and x(~i,t)is the x position of the ith
particle. In the limit as N e m,

JN-’ ~+(2r’c-’ 2“@o

o

where @oreplaces ~ i. In (9) the velocity component VYof the

ith particle is a function of only (~i,t) since we assume an

initially cold particle distribution in velocity. Our theory

can include an initially thermal particle distribution, which

would add an average over the initial velocities in (9). We

will show later in (25) that for an initial energy spread

dyl << 2yOl ArD/(f20/yol), the particle distribution can be

considered monoenergetic at t = O. The present analysis is
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valid when the inequality in (25) is satisfied. This does not,

however, prevent the particles from thermalizing as the

instability develops.’ The wave equation can be separated

into equations for EO(t) and a(t). By multiplying (8) by

sin (kH(x – a)), integrating across the waveguide from

x = – a to x = a and operating on the resulting equation

with

J

t+27c/(oo+i)

(

~1, sin (mot’ + a(t’))

r Cos (coot ‘ + a(t ‘)) 1

we arrive at the following expressions, which are valid to

order r/@O, &/oO:

“ sin (k.(x(#o,t’) – a)) sin (toot’+ ct(t’))~>
1

“(f
f + 27t/(o,3 +&) –1

E(t’)sinz (mot’ + a(t’))di”
t 11

(lOa)

{

2[elcro J
1+277/(03+6)

r(t) . “J — CoO(coo+ d)“ dt ‘
W02 + c2k.2 a t

. (u,(+o,f’) sin (k~(x(~o,t’) - a))cos (mot’ + a(t’)))
)

“u
t + 2z/(m3+ i)

)

E(t’) COS2 (@ot’ + U(t’)) dt’ - 1“

t

(lOb)

In the preceding equations, < ) = (277)-l ~~ff d~o is the

ensemble average over the initial particle phase. We note

that the temporal averages in (lOa) and (lOb) are performed

over the actual wave period 2n/(@0 + d). Equations (lOa)

and (lOb) describe the linear as well as nonlinear evolution

of the wave frequency and amplitude in terms of the

particle orbits. The only restriction placed on r(t) and a(~)

is that they vary little in a wave period 27r/(00 + d).

The right-hand side of (10a) and (lOb) contain the

details of the particle dynamics which are related to the

fields through the relativistic orbit equations. Defining

B = ~. + il, wher? B. = V.IC and P, = VY/C, the relativistic

orbit equation can be put into the form

d~/dt = @/3 + ‘lelBz(x’t) /? 4
YL y~moc ylmoc

“(1 – p(p – /?”)/2)Ey(x,t) (11)

where yl = (1 – /3/?*)- 1/2, ,EY(x,t) = – c- 1 i?AY/i3t, BZ(x,t) =

dAY/i?x, and x is given by dx[dt = c(1 + j?*)/2.
We now choose the solution for (11) to be of the form

M40,~)= B1(f#o,t)ew (@(40,f)) (12)

where fll(~o,t)= (~xz+ ~y2)1/2= (p&)l/2and

is the velocity space angle at time t. Substituting (12) into

(11) and equating real and imaginary parts, we obtain the

following fully relativistic equations for the velocity

magnitude and velocity space angle

(13a)

where yl = (1 - ~12)-’/2 and dx/dt = c~l cos #(@o, t).

Equations (5), (10), and (13) form a set of coupled nonlinear

equations which describe the evolution of the electron

cyclotron maser instability in the single wave model.

In Appendix A we show that the results from linear

theory can be recovered from these equations. The orbit

equation in (13) when written on the slow time scale yields

a constant of the motion which is discussed in Section VI.

The constant is useful in forming a qualitative picture of the

trapping and saturation process.

The amplitude of the electric Eo(t) can be related to

average decrease in particle energy through the energy

conservation equation. Conservation of total energy within

the waveguide implies that

J
~ ~ (&.r(x,t) + &P(x,t)) dx = et (14)

a

where Ef(x,t) = (Ey2(X,t) + Bz2(x,t))/8z is the field energy

density, 8P(w) = ao<(y(#o,t) – 1) 6(x – x(~o,t)))moc2 is
the particle energy density, and tt = (ao/2a)(yo – 1)VIOC2

is the average total energy density. Substituting EY =

—c– 1 8A ~/8t and l?= = 8AY/8x into (14), where AY is given

by (6), and performing the spatial average as well as a

temporal average, leads to the following expression for

Eo(t):

Eo(t) =
*“b(l + (:)2(1 - 2“”’J)-”2

“ (Yol - (7A(40!t)))1/2 (15)

where cob = 41Tle12rJo/(nzoa)is a modified plasma frequency

and yol is the initial gamma of the particles. In deriving

(15), terms of order higher than r/o.). and &/co. have been

neglected. Since ck./wo % 1 and &/w. << 1, the expression

for Eo(t)can be simplified to

d~moc
Eo(t) % —

lel
@b(yO~ – (y~(~0,t)))l’2. (16)

A simple analytic expression for <yl(@o,t)) at saturation

which will permit us to determine the maximum field

strength through (16), is obtained in Section VI.

Since our system of fields and particles is independent of
the spatial variable y, we note that the y component
of canonical momentum PY = y~movY — c - ‘lelAY(x,t) –

flomox is a constant of the motion for each particle. The

conservation of total energy as well as the y component of

canonical angular momentum is monitored throughout the

numerical simulations of (10) and(13) to ensure consistency.
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The nonlinear model developed in this section is directly

applicable to the experimental situation in which a wave is

spatially amplified in the streaming direction of a gyrating

beam. The saturation levels obtained with the present model

are directly related to the saturation levels in an amplifier

when the axial beam velocity equals the wave group velocity.

As pointed out in Section III, this situation corresponds to

a grazing intersection of the waveguide mode with the beam

cyclotron mode when viewed on the dispersion diagram.

Furthermore, such a grazing intersection leads to an

absolute maximum in the temporal growth rate. In a

steady-state amplifier the input wave amplitude initially

grows exponentially, enters the nonlinear regime, and

saturates. If we follow a group of particles contained in a

thin cross-sectional slab of the beam, we note that the net

flow of total energy flux into this slab is zero since we only

consider, the case where the axial beam velocity and wave

group velocity are equal. Therefore, in the reference frame

of the particles, the field amplitude evolves in time. This is

precisely the situation described by our model. With the

appropriate transformations (see Appendix B), the satura-

tion levels of the spatially amplified wave can be obtained

with the present temporal model.

V. NATURE OF APPROXIMATIONS

A number of approximations have been made in

developing our nonlinear model. Among these are 1) the

assumption of a single unstable wave, 2) the assumption of

a single excited vacuum mode in the loaded guide and,

finally, 3) the initially monoenergetic beam approximation.

In this section the regimes of validity of these approxima-

tions are examined. We find that our model is valid for a

wide range of parameters.

To verify the validity of the single wave approximation,

the growth rate and field energy spectrum are examined.

Using a Taylor series expansion of the linear growth rate

about k. = O, r(ko) x r(o) + (1/2) (d2r(o)/dkOZ)kOZ, we

find that the half-width of the growth rate spectrum is

Ak = 2(r(0)/[d2r(0)/dk02 1)1/2. Since the field energy is

proportional to exp (2r(0)t), the half-width of the energy

spectrum after the field has e folded N times, t = N/r(O) is

ak = 2(ln 2/N) 1j2(r(o)/ld2r(0)/dk021 )1i2

= ~-1/2(ln 2)1/2Ak. (17)

From the linear dispersion relation (1), we find that, for the
two cases discussed in Section III, the half-width of the

linear growth rate spectrum for case 1) (i.e., /301 > Dl,C,i,

and OJO= ckn = QJyOJ is

()

1/2

Aki z 2JZ (ri(o)/c) *
ACOO

(18a)

and for case 2) (i.e., Dol >> ~l,Crit and coo = ckn = 1~0/Yol),

is
Akii z COofc.

by (3 b). The half-width of the energy spectrum after the

field amplitude has e folded N times is for case 1)

()

Am. 1/2
clki x 2~~ (ln 2)112N - 1i2(ri(0)/Acoo) — Coo/c

coo

(19a)

and for case 2)

~kii x (In 2) ’f2N - ‘/2 COo/C. (19b)

The frequency spread corresponding to the wave number

spread in (19a) and (19b) can be estimated from the vacuum

dispersion relation w = (cooz + c2k02)1/2. The frequency

spread is given approximately by tko x (cdk/qJ2aJo. From

the expressions for the half-widths of the energy spectrum

in (19a) and (19b) and the frequency spread, we see that the

spectrum can be represented by a single wave if

N - 1f2(17i(0)/Acoo) (Acoo/aJo)lfz << 1

for case 1) and N-1/2 << 1 for case 2). Typically, in the

examples we shall consider the number of e folds before the

wave saturates is N % 15.

In the nonlinear analysis, the general form of the excited

wave was that of a single vacuum waveguide mode. In the

presence of a tenuous electron beam, this vacuum mode is

expected to be a good representation of the actual field in

the loaded guide. If the particle density is sufficiently large,

the field induced by the beam current density will couple to

more than one vacuum waveguide mode. Consequently,

the profile of the actual field will differ from the form

sin (k.(x – a)), used in the analysis. We now show that, in

the teriuous beam limit; the correction to the vacuum wave-

guide field is of order Am/co. and can, therefore, be neglected.

To obtain a rough estimate for the correction to the

vacuum field, we assume that the particle current density at

the frequency co “ii produced solely by the vacuum mode

given in (5). To simplify the calculation we take x << a. The

electric field in the loaded waveguide is chosen to have the

form

~,(X,t)= –Eo(t) COS(0)ot+ it(t))

. ~~1 am sin (km(.x - a)) (20)

where Eo(t), coo, u(t), and km have been defined following

(5), and am are the constant relative amplitude coefficients
of the electric field. If corrections to the Jzth vacuum mode

are desired, we assume that the current density is produced

by the nth vacuum mode given in (5). Substituting the

vector potential associated with (20) into the wave equation

(7), we find

~~1 ([co02 - c2k~2 + (c2k~2 + COo2)ci/wo]EO(t) sin(wot + u)

(18b) )
– (c2km2 + OJo2)(~o/coo)cos (Oot + a) am sin (km(x – a))

In (18a), I’i(0) is the linear growth rate at k. = O as given . -4nCoJy(x,t). (21)
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.

The current density in (21) can now be written as

.lY(x,t) = jj .lJt) sin IqJx – a) (22)
~=1

where

J~(t) =
(

–(le[cro/(2na))(– I)(m+ 1)12( vY(~o,t)), for m odd

o, otherwise

when k~x(#O,t) << 7c/2. Combining (21) and (22) and

neglecting higher order terms, we find

. (.2 – ~z~mz)- 1 (23)

where m # n and the linear expression for vY(q50,t ) given by

(A4) was used. Comparing the right-hand side of (23) with

(A5a) shows that

a ~ ((coo2 – c2kn2) + (ao2i- Czkn’)Am/co)
m

coo2 — c2k~2

which reduces to

~ ~ 2(Aco/coO)
m << 1

1 – (m/n)z
(24)

since co. % ck.. The coupling to other vacuum waveguide

mode is of order Aco/coO, and hence our original choice for

the electric field given in (5) is indeed reasonable.

In this paper we consider the beam to be initially mono-

energetic in the beam frame. The range of validity of this

assumption requires some examination. Since reference

will be made to quantities in both the laboratory and beam

frames, we shall denote the former with unprimed variables

and the latter with primes. It is clear that the cold beam

approximation will be valid if the total initial spread in yl’

satisfies ~yl’ << 2(yol’ – (yl’),), where <yL’>, is the

average value of y at saturation. In terms of efficiency, this

condition becomes

dyl’/yo*’ << 21jJ(yo1’ – l)/yol’ (25)

where q’ is the beam frame efficiency defined as q’ =

(YOI’ – (YI’).)/(YoJ. – 1). since the unstable wave has an

infinite parallel wavelength in the beam frame, any spread

in V[l’ which does not violate the above inequality is

unimportant.

To define the beam qualities necessary for the validity of

our cold beam approximation, it is useful to express (25) in

terms of laboratory frame quantities. The right-hand side of

(25) can be written in terms of laboratory frame quantities

by using the transformation rule for efficiency derived in

Appendix B, i.e., q = q’(yol’ – l)yo/(yoL’(yo – 1)) where

q is the power efficiency in the laboratory frame. LJsing the
results of Appendix B, the inequality in (26) becomes

c7y1’/yoL’ <<
2(70 – 1) ~

YO

where y. = (1 – VOII‘/cz – U012/c2) -1’2.

(26)

A spread in the beam frame gamma dyl’ can arise from

a) a finite beam temperature in the laboratory frame or, in

the case of a monoenergetic beam in the laboratory frame,

b) a spread in the velocity space angle of the particles.

In case a) only a temperature spread in the perpendicular

velocity is considered, so that vl = VOL + AuL where

Aul << Vol is the thermal component of velocity. Only

perpendicular temperature is considered since a parallel

temperature in the laboratory frame AU[1 contributes a

higher order correction to dyl’ than Avl if AVII and Av~ are

of” the same order. Since the perpendicular momentum is

frame invariant, yvL = yl’vl’, we find that the thermal

spread in y takes the form

AY = t yol[ AYL’ (27)

where y.,, = (1 – V.,, ‘/cz)- 1/2, O.,1 is the axial laboratory

frame velocity, and AyL’ = 2(voJc)yo3 Aul/c is the thermal

spread in yl’ due to AuL’ = YO [1 AV~. Substituting (27) into
(26) gives the following requirement for neglecting thermal

effects in VI:

Ay/(yo – 1) << 2~. (28)

In the preceding inequality the efficiency q is calculated

using the cold beam approximation.

In case b) the particles have the same energy; however, a

spread in the velocity components exists. Consequently, the

particle velocity components in the laboratory frame can be

written as

v~ = VOJ-— Vol A8 (29a)

Vll = Vol, + S)ol A6’ (29b)

where IAOI << 1 is the spread of the velocity space angle,

i.e., the angle between the total velocity vectors of the

particles. To first order in Ad, we see that Vll2 + Vlz =

V. II2 + Uolz, so that the system of particles is monoenergetic

in the laboratory frame. The transformation rule for y from

the laboratory to the beam frame y’ = yo Ily(l – vo II v II/C2)

shows that the particles are not monoenergetic in the beam

frame. In the beam frame we find that

Y1’ = Yol’ + AY1’ (30)

where yol’ = YOIYOII and AY~’ = YOIIYO(VOIIVOdC2) Ao. $u~-
stituting Ayl’ into (26) gives a condition on the magnitude

of the maximum angular spread

lAOl~~X <<
2(yo – 1) v (31)

Yo Yo112z’o/\voJc2

allowed in the cold beam approximation. We will return to

conditions (28) and (31) in the next section.

One of the causes of energy spread in an unneutralized

beam is the self-electrostatic field. For the planar beam that

we have considered, the total spread in yl’ can be shown

to be

6yLse]f x (M2flo~’((Qo/yo~’) /ckJYo~’ (32)

where p’ = co~’/(~yoL’ coo’) and foo’ = ~0/YOL’. con-

sidering (25), this imposes an upper limit on p’, and hence

the beam current in the laboratory frame.
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VI. SATURATION MECHANISMS

In this section some qualitative arguments concerning the

saturation of the electron cyclotron maser instability are

made. There are two mechanisms which are responsible for

saturation of the unstable wave in the maser instability.

They are 1) depletion of the rotational free energy of the

electrons and 2) phase trapping of the gyrating particles in

the wave. Which of the two mechanisms is actually

responsible for saturation in a particular situation depends

on the initial beam parameters.

Case 1): Free Energy Depletion

As mentioned in Section III, the linear dispersion

relation [see (l)] gives rise to a threshold condition for

instability given by /?O1 z ~l,Crit. That is, the maximum

free energy per particle available to the wave is

(&free = yo~ )– ‘YL,crit ‘OC2 (33)

– 112 If the beam pardCleS Were
where yl,.rit = (1 – P~,.rit) .

to lose all of the free energy given by’ (32), the energy

conversion efficiency would be

~ = (YO1 – Yl,.rit)

(701 - 1)
(34)

where yol 2 yl,C,i,. This, of course, is a rough approxima-

tion, since as the instability develops the particles warm up,

while the threshold condition was obtained for a cold beam.

Furthermore, as will be seen, competing processes such as

electron trapping may take place before the beam loses its

free energy. However, if yol is slightly greater than y~,C,it,

the expression in (33) will represent a good approximation

to the actual conversion efficiency. Since, if Yol 2 yl,erit,

the particles lose’ all their free energy before thermalizing or

trapping takes place and the wave will be linearly stabilized.

If, however, yol >> y~,C,i,, the particles will phaie’ trap in

the wave and saturation will occur before all the free energy

is used up.

Case 2): Phase Trapping

The condition for wave saturation due to phase trapping

can be viewed in a number of ways. First, we have noted in

Sections II and HI that the frequency of the wave must be

slightly greater than the relativistic electron cyclotron

frequency f20/yol for an instability to develop. Therefore,
initially we have

co — !ilo/yol = Aco ~ O (35)

where Aw is the frequency shift which can be obtained from

the linear dispersion relation. Now, as the instability

develops the average y of the particles {yl) decreases until

o – !20/(yl) = – AOJ.At saturation (yl) is minimum and

co – f20/(yl). = – Aco (36)

average change in the y of the particles (Ayl), = yol –

(yl)~ is given by

{AyJ~ = 2yo, Ao#oA (37)

The efficiency of conversion of kinetic energy to field energy

q, when electron phase trapping is responsible for saturation,

is

II = 2@0/co)Yol/(Yol – 1). (38)

It should be noted that the efficiency in the beam frame

cannot be made arbitrarily close to 100 percent simply by

increasing the frequency shift AoJ. The growth rate of the

field is a function of Aco and is nonvanishing for a limited

range of Ace. The relations in (37) and (38) are valid only

if Aco lies within the nonvanishing part of the growth rate

spectrum. To ‘find the actual amplitude of the field at

saturation E. ,~, we use the expression for conservation of

total energy given in (16). The maximum field amplitude at

saturation is easily shown to be

(39)

where it has been assumed that d/co. << 1 and ckH/wo z 1.

We now examine the nonlinear behavior of the particles

with the aid of a constant of the motion derived from the

orbit equations.

The orbit equations given in (13) can be written, in the

small Larmor radius approximation x << a, as

duL _
— – * cos ((OJo + Aco)t) sin (~(t) + do) (40a)
dt moc

@ _ Qo [elEo
_—

z y~
– — cos ((OJo + Ao)t) COS (~(f) + do)

ulmoc

(40b)

where UL = yl~l is proportional to the transverse particle
2 1/2. The field amplitudemomentum, and yl = (1 + U1 )

Eo, as well as the frequency U. + AoJ, are considered fixed

and co. = f20/yol is the initial electron cyclotron frequency.

The particle momentum ulmoc and time rate of change of

the velocity space angle d@/dt consist of fast and slow time

scale variations.

The fast time scale variation is associated with the wave

frequency or electron cyclotron frequency, while the slow
time scale is associated with the frequency shift Am. The

nonlinear behavior is governed predominantly by the slowly
varying parts of U1 and d~/dt. Since (co. + Am) – d~[dt

changes slowly, the orbit equations in (40) written on the

slow time scale become

dul _ le\Eo

z
– - sin (1)

2moc
(41a)

where <yl)~ is the average value of yl at saturation.

Comparing (35) with (36), we find that at saturation the
~ = (co. + Am) – ~ + * COS (~) (41b)

Y1 2mocuL
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Fig.6. Particle trajectories invelocity phase spaceas found from the
constant of the motion. The figure shows the boundaries of the
regions accessible to particles initially uniformly distributed between
O s 1 < 2rc with UL = UOL.

where 2 = (co. + Aco)t — q!J(t) — do. These slow time

scale orbit equations have the following constant of motion:

c = ~ Ul(t) cos (A(t)) + (oJo+ A@)
moc

(

. “jI(f) + ~ol”o .

)
2. (42)

co. + Aco

Each particle moves in phase space (uJ) on C = constant

curves. These C = constant curves describe the particle

orbits when a constant frequency and constant amplitude

field are instantaneously switched on. This situation can be

realized by injecting particles into a field filled cavity. The

particle trajectories in phase space lie on the constant C

curves depicted in Fig. 6. The initial conditions for the

example shown in the figure are yol = 1.05, p = 0.05,

Ace/co. = 0.018, and lelEo/(yo~coomoc) = 0.0025. In this

illustration the frequency shift is consistent with linear

theory and the field amplitude E. corresponds to roughly a

quarter of the value at saturation.

In Fig. 6 the particles are initially uniformly distributed

between O ~ A s 27r with U1 = Uol. The trajectory

followed by a particle is determined by its particular value

of C which is different for each particle. The particles have

access to a limited region of phase space, the boundaries of

which are shown in Fig. 6. Particles which initially lie on

closed C = constant curves are considered trapped even

though UL as a function of 1 is single valued. However, as

the particles travel along their C = constant curve, U1 will

eventually become a multivalued function of 2. Similarly,

for a growing field amplitude, particles can be considered

trapped if they lie on closed C = constant curves, long
before U* becomes a multivalued function of L The
character of the accessible C = constant curves is

determined, among other things, by the value chosen for

Eo. For sufficiently small values of Eo, the particles will not

lie on closed C = constant curves and, hence, are not

I I I

UOL=0,3

,.

<
J 0.2

II

>+

0,1 —

Fig. 7. The deformation of a monoenergetic beam in the presence of
a constant amplitude field showing the actual particle positions in
phase space. The curve for t = i~ indicates the initial positions,
and the one for t = t, the positions when the beam indicates
trapping.

0.4,
I I f

u~1=03

0.1

I I I
o .12 T 3n/2 2.

i
Fig. 8. The particle positions in phase space for a monoenergetic

beam deformed by a constant amplitude electric field at t = t,when
the particles have lost the maximum energy and are in a state
corresponding to saturation.

trapped, The value of E. for which the first closed C =

constant curve intersects the UJ = UO1 line determines the

field amplitude necessary for the onset of trapping. The

separatix separating the closed and open orbits first

intersects the line U1 = Uol at 2 = n. As larger values of

E. are chosen, the inaccessible interior region of phase

space will contract and approach the point U1 = Uol and

2 = n. At the value of E. for which the inaccessible

interior region vanishes, the average particle energy ceases

to decrease. The value of electric field amplitude necessary

for the disappearance of the interior region is

E
moccoo Aw

~x2— u~L — .
lel w.

(43)

In Figs. 7 and 8 the actual positions of the particles in

phase space are shown at various times. The parameters

used for these figures are the same as those used in Fig. 6.
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Fig. 9. The distribution functions of the electron beam deformed by a
constant amplitude electric field at t= to,fl,tz.

Superimposed on the curves in Figs. 7 and 8 are the

boundaries of the accessible region of the C = constant

curves. At t = O, when the electric field is switched on, the

particles are uniformly distributed along the UL = Uol line

between O s A s 27c. In the constant amplitude electric

field the particles proceed to bunch and rotate about the

interior boundary as shown in the figures. At t = tl the

particles begin to overtake each other and bunch along the

right-hand side of the interior boundary. At a still later

time t = t2,the particles rotate and bunch along the

bottom of the interior region. At this point the configuration

corresponds to the saturation state since the average

particle energy is at ‘a minimum. The average kinetic energy

continues to oscillate as the particles rotate about the

interior boundary in a clockwise direction. The distribution

functions J@(ul) corresponding to the phase space trajec-

tories in Figs. 7 and 8 are shown in Fig. 9. As can be seen

from Figs. 8 and 9, not all the particles are located at the

bottom of the interior boundary at saturation.’ Conse-

quently, the average of U1 at saturation is not exactly given

by ul at the bottom of the interior region.

For sufficiently small values of EO the accessible C =

‘constant curves are open and particles are not trapped. As

E. is increased, the first particle to become trapped is

always the one initially located at (uo~,rc). Trapping begins
when the particle at (Uol,rc) has a closed orbit with turning

points at I = 2rc and O. At these turning points, d,ljdt

vanishes. Since the constant C is invariant along this closed

orbit and d~ldt vanishes at 2 = 27cand O, we can obtain the

threshold value of EO for trapping from (41b) and (42). The

approximate value of the field amplitude for the onset of

trapping is given by

coomoc
Eo=—

4]e]uo1 ()
YOL2 : .

Using the constant of the motion in (42),

(44)

the minimum

value of U1 reached by the first trapped particle occurs at

2, = n and is approximately

(45)

The corresponding minimum y for this particle is y~,~i. =

Yol – 2701 Amo/oo. Consequently, the first trapped par-
ticle undergoes a change in y at J. = n given by

Ay~ = 2yol Acoo/wo. (46)

This expression for the maximum change in y allows us to

estimate the field amplitude at saturation as was done in

(39). The change in y given in (46) is identical to the value

found in (37), where a different line of reasoning was used.

WI. RESULTS

The nonlinear coupled equations (lOa), (lOb), (13a), and

(13b) are solved numerically for a wide range of parameters.

In each case the distribution function was represented by

approximately 40–1 00 test particles. The actual number of

particles used was determined by performing runs with

larger and larger numbers of particles until no discernible

difference appeared in the results. The conservation of both

total system energy and canonical y momentum was

monitored. The integration timesteps were adjusted to

maintain the conservation of both constants to within

0.5 percent over the duration of a run. As diagnostic aids,

plots of the test particle velocity distribution function,

velocity space, and phase space were made at various times

during the runs.

A run was initiated by uniformly distributing the particles

in the velocity space angle O s @o s 2rt and assigning them

the same perpendicular velocity ol = Dol. A small

amplitude electric field was introduced as a perturbation

and allowed to grow self-consistently. From the results of

the single wave simulation runs, we have made composite

graphs of the transfer efficiency from particle kinetic energy

to wave electromagnetic energy at saturation as a function

of several parameters. A comparison between these results

and the analytic predictions in Section VI shows good

qualitative agreement.

We will now discuss the phase space dynamics for the two

saturation mechanisms discussed in Section VI. The

evolution of the particles in phase space and their distribu-

tion functions is shown when saturation occurs by 1) free

energy depletion and 2) phase trapping. In the free energy

depletion case the initial parameters are yol = 1.012 ~

Y.L,crit = 1.0108, p = 0.05, where p is a dimensionless

parameter related to the beam density through v =,—
CDb/(/YOL ‘O), ‘O = Ckn = lQo/yol, and 1 = n = 1. Fig.

10(a) and (b) shows the particle phase space in the course

of the instability when the growth is still linear. At satura-

tion, shown in Fig. 1O(C), the particles indicate no phase

trapping. The average particle yl at saturation is within a

few percent of yl,C,i,. However, the individual particles

energies have a large variation, as can be seen from the

distribution functions depicted in Fig. 1l(b) and (c). The
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Fig. 10. The particle positions in phase space from a simulation of the
cyclotron maser instability in the case of saturation by energy
depletion. (a) t= t:,linear phase. (b) t= f,,nonlinear phase.
(c) t = t., at saturation.
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Fig. 11. The distribution function of the electrons from a case of
saturation by energy depletion at various times as in IFig. 10,

predicted efficiency according to (34) is q = (yO~ –

Yl,crit)/(YOl – 1, % 10 percent. This is in excellent agree-

ment with the numerically evaluated efficiency of 10

percent. To illustrate case 2), where phase space trapping is
responsible for saturation, we choose the parameters

YOL = 1.2, ,U = 0.05. [Note that Y4,C,,, = 1.01 for this case
as in case I).] The particle dynamics in velocity phase space

and the velocity distribution function are shown at various

times z during the evolution of the run in Figs. 12 and 13.

In Fig. 12(a) the particles are shown at ~ = 250 when they
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I I I I I I I I 1 1
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Fig. 12. Particle positions in phase space from a simulation in the
case of saturation by trapping. (a) Linear phase. (b) Nonlinear
phase. (c) At saturation.
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Fig. 13. The distribution function for saturation by trapping for
times given in Fig. 12.

have begun to display some bunching but are relatively

close to their initial phase space positions. The corre-

sponding distribution function in Fig. 13(a) displays little

spread in velocity. When the nonlinear effects manifest

themselves by a change in the growth rate, the velocity
phase space bunching becomes distinctly visible and the

velocity distribution begins to spread as shown in Figs.

12(b) and 13(b). In Figs. 12(c) and 13(c), we show the

velocity phase space and distribution function at saturation.

The phase space plots in Figs. 12(b) and 12(c) show the

trapped electrons circulating and forming a tongue
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Fig, 15. The field amplitude and average beam y as a function of
time for a typical simulation.

configuration, similar to the one in Figs. 7 and 8, where a

constant electric field was present. The saturation mech-

anism for this case is clearly phase trapping of the beam

electrons in the wave. Because not all the electrons are

trapped, an average over the distribution function is

necessary to determine (yl)~. This necessitates the introduc-

tion of a numerical factor f in the simple expression

corresponding to (37):

(41JslYoL = Zf Admo.

The factor f is a number on the order of unity and depends

on the fraction of deeply trapped particles f S 1.

As an example of a typical run, we shall follow the

evolution of field and particle quantities as a function of

time.” The initial conditions chosen for this example are:
p = 0.05, yo~ = 1.05, COO= ck. = Qo/yol and n = 1, and

—
p = @~/(~yOl coO). In Fig. 14, the nonlinear frequency
shift and growth rate are shown as functions of the

normalized time parameter z = coot. Initially, for z ~ 150

when the field amplitude is small, we see a transient, during

which the perturbing field comes into equilibrium with the

particles. That is, initially the presence of the small

amplitude electric field is inconsistent with the initial

conditions of the beam particles. During the early transient
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Fig. 16 The efficiency of the cyclotron maser as a function of energy
found from the two mechanisms of saturation and from simulations.

the field and particles adjust themselves to self-consistently

satisfy (lOa), (lOb), (13a), and (13b). The transient regime

lasts for a time roughly given by ~~,,. x o+Jr~. The linear

regime 150 S ~ s 350 follows the initial transient. In this

regime the wave grows exponentially and both the growth

rate and frequency shift assume the values predicted by

linear theory. As will be apparent from one of our later

figures, the growth rates and frequency shifts in the linear

regime are in excellent agreement with those found from the

linear dispersion relation. The exponentially growing wave

attains a sufficiently high amplitude by z = 350 to start

nonlinearly affecting the particle dynamics, and the growth

rate begins to decrease until it reaches zero at ~ x 420 when

saturation occurs.

The nonlinear change in the growth rate is accompanied

by a less pronounced change in the frequency shift prior to

saturation. We find that for the parameters used in this

example at saturation, 00 + ~(~) – Qd(YJ z o in good

agreement with the qualitative argument in Section VI. The

normalized field amplitude, go(~) = lel Eo(~)/(mOcCOo), and

the average perpendicular particle energy (yl> are shown as

functions of ~ in Fig. 15.

We have found that the energy efficiency curves for a

given set of parameters always display a maximum. For

example, with v = 0.1, the efficiency curve shown in Fig. 16

has a peak of 40 percent when yol = 1.1. The peak results

from the competition between the two saturation mech-

anisms described in Section VI. As can be seen in Fig. 16,

the efficiency curve has a cutoff at YL = Yl,.rit —– 1.0185.

The curves of the linear growth rates and frequency shifts,

obtained by numerically solving the linear dispersion

relation of(1) are shown in Fig. 17 as a function of yol. The

linear growth rate curve shows a threshold at yO~ = 1.0185,

identical to that in Fig. 17. Fig. 17 also shows a comparison

between the results of linear theory [see (l)], and of the

particle simulations in the linear regime. Clearly, the linear

growth rates and frequency shifts are in excellent agreement.

For beams that have initial energies characterized by
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Fig. 17. Acomparison of thegrowth rate andphase shift predicted

by linear theory and the results from the linear portions of the
computer simulations.

Yol > Yi,.,i,, we find that the excited wave extracts free
energy from the beam until (yl) = yl,,,it and the system

becomes linearly stable without particle trapping taking

place. The simulations confirm this, since the velocity phase

space plots show no evidence of trapping at the time of

Saturation when yo~ 2 yl,C~i t. In this regime a rough

expression for the average change in yl at saturation is

(AY1)S = Yol - y~,crit

and implies an efficiency monotonically increasing with

YO1; this is shown as a dashed curve on Fig. 16. In the other
regime where yol >> yl,C~i ~, the saturation mechanism is

dominated by particle trapping and we find that (Ayl}, =

2~yol Ao.)/coO.This implies an efficiency curve monotonically

decreasing with yol as shown in Fig. 16 with f = 1. The two

saturation mechanisms described here predict an efficiency

maximum; this is also verified by the results of the particle

simulations.

Our saturation arguments show qualitative agreement

with the actual efficiency obtained numerically. In the

Yo~ }} y~,c~it regime we have arbitrarily set~ = 1, implying
that all the particles are deeply trapped at saturation. From

Fig. 16 we see that in the intermediate regime f is closer to

1/2. Similar arguments hold in the yol ~ yl,C,i, regime. The

dashed curves in Fig. 16 show the competition between two

mechanisms leading to a maximum in the efficiency curves.

We now present the results of our nonlinear analysis for

a wide range of parameters. In Fig. 18, energy efficiency as

a function of yol is shown for various values c~f ,u, y =

0.025, 0.05, 0.15, and 0.35. In this figure the initial wave

frequency co. was set equal to ck~ with n = 1. Furthermore,
the initial relativistic cyclotron frequency Qo/yol was set

equal to ck.. These initial conditions on coo, ck., and

f20/yol were selected because they occur near the maximum

linear growth rate. All of the curves in Fig. 18 display a

maximum in efficiency in the beam frame as a function yol.

This characteristic of the curves has already been explained.

40 –

$30 --
#=o.35

~

s 20 --

10 -

1.0 1.1 1.2 1.3 1.4 1.5

’01

Fig. 18. The beam frame efficiency of the electron cyclotron maser
as a function of energy for various densities when ckn = Qo/zoL.

Fig. 19. The beam frame efficiency of the electron cyclotron maser
when the cyclotron frequency is varied.

A further feature of the curves is that as p increases, Yl,.,,t

increases in agreement with the definition of /i’l ,C,i~given in

Section III. From Fig. 18 we also note that the efficiency

increases at low values of yol as p is decreased. This

property of the curves can be explained by noting that as p

decreases, y~,C,i, decreases, resulting in a sharp increase in

efficiency as a function of yo~ near y~,~,i~. The maximum

efficiency seems to level off at -40 percent for low values

of yo~, when ~. = ck. = Qo/yol.

Dramatic increases in the efficiency can be realized in a

number of ways. For example, by slightly mistuning the

relativistic cyclotron frequency away from co. = ck,,,

electron phase trapping can be postponed and higher

efficiencies realized. [n the regime where electron trapping

is responsible for saturation, we have shown that the

efficiency is roughly 2~yol(coo + Aco – Qo/yoJ/(yol – 1).

By choosing @o > !Qo/yol, we can expect the efficiency to

increase. In Fig. 19 the efficiency is shown as a function of

(Qo/yol)/oo for various values of p and yol. The values for

K and yol were taken from the maximum efficiency points

in Fig. 18. Fig. 19 shows clearly that higher efficiencies can

be realized for (f20/yol)/coo less than unity. Since sufficiently

small values of (Qo/yo~)/coo lie outside the growth rate

spectrum, the efficiency drops to zero. By mistuning the
magnetic field, the efficiency was increased from 40 to 63

percent in the beam frame for the case p = 0.1 and yol =

1.155.

The efficiency can also be increased by varying the external

magnetic field in time in such a way that co – Qo(T)/(yL(T))

is held fixed. This procedure is similar to the mistuning
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approach discussed, in that electron phase trapping is

postponed. Choosing # = 0.1, YO1 = 1.1, and changing

the magnetic field in time such that (co – QO(~)/(yl(z))) is

fixed at its initial value of 0.034, an efficiency of x 70

percent was realized. This compares with an efficiency of

x 40 percent when the magnetic field was held fixed at

f20/yO~ = W. = ckm.

VIII. DISCUSSIONAND EXAMPLE

We have shown that the electron cyclotron maser

mechanism can be an efficient method of producing short

wavelength radiation. The mechanism seems particularly

attractive for the generation of submillimeter radiation when

higher cyclotron harmonics are considered. Preliminary

results at high cyclotron harmonics and also higher

waveguide modes indicate that the efficiency remains

relatively high. These results, on the higher harmonics, will

be published in a forthcoming paper.

Experiments on the cyclotron maser using intense

relativistic electron beamsl 0– 13 have produced efficiencies

of less than 2 percent. The low experimental efficiencies are

in good agreement with our theoretical results and are the

result of the following. 1) The transformation of efficiency

factor from the beam frame to the laboratory frame, i.e.,

YO(YO1’ – l)/(yol’(yo – 1)) [see (B7)], was typically small,

<0.3. 2) The value of yol in the beam frame was not

optimized for maximum efficiency (see Fig. 18). 3) The

method used to produce transverse energy also introduced

temperature in the beam distribution [see (28), (31), and

(32)]. The combination of these effects led to the low

observed efficiencies. With our improved understanding of

the saturation levels and mechanisms, efficiencies can be

substantially improved.

As an illustration of the beam and waveguide parameters

needed to generate electromagnetic radiation at 1.0 cm, we

consider the following detailed example. Referring to Fig.

2, we choose a = 0.25 cm and L = 27c(2a) = 3.14 cm. The

waveguide width L corresponds to the circumference of a

cylindrical guide having a radius equal to 2a. In the

laboratory frame we have a cold electron beam with a total

energy of V = 300 keV per particle. The electron velocity

is partitioned such that Do,, = 0.69c and VOL = 0.36c.

Therefore, the total y of the beam electrons is

70 = (1 – (%1[/c)2 – (ool/c)2)- 1/2 = 1.59

and

Yell = (1 – (~0@)2)-1’2 = 1-37.

With a magnetic field B. = 11.4 kG, the electron Larmor

radius is r~ = vol/(lelBo/yornoc) = 0.34 a = 0.085 cm.

Taking the axial current to be I = 860 A, with the beam

thickness equal to twice the Larmor radius and beamwidth

equal to L, we obtain a beam density in the laboratory

frame of n. = I/(\elvoll(2r~L)) = 2.6 x 10” cm-’. The
electron surface density is given by a. = ng(2r~) = 4.42 x

1010 cm-z.

‘Now in the beam frame, DoII’ = O, hence, YOL’ =

(1 – (oo1’/c)2)- l/2 = yo/yell = 1.155 and vo~’ = (1 –

(701’) -2)1’2 = 0.5c. The electron surface density in the

beam frame becomes co’ = ooyol’/yo = 3.2 x 1010 cm-z,

which determines the modified plasma frequency mb’ =

(4n]e12a0’/(nzoa)) 112 = 2.02 x 10’0 s-1. To obtain the

efficiency in the beam frame q’, we need p’ as well as

(Qo/yol’)/(ckH). To continue, we find that ~0/YOL’ =

lelllo/(yol’nzoc) = 1.75 x 10t’ s-l, ck. = l.88_x 101’ S-l

and (Qo/yol’)/(ck.) = 0.93. NOW W’ = (mb’/~yOl’)/mO’ =

0.1, since coo’ is set equal to the cutoff frequency ck.. From

Fig. 14 we find that for ,u’ = 0.1, Yol’ = 1.155, and

(!20/yol’)/coo’ = 0.93 the efficiency in the beam frame is

q’ = 63 percent. Using (B7) of Appendix B, the efficiency

in the laboratory frame is q = 11’YO(YOL’— 1)/(y0’(% —

1)) = 22 percent. Since the beam power in the laboratory

frame is Pb = IV = 258 MW, the radiated power becomes

P, = qPb = 57 MW. The spread in Y1’ in the beam frame

due to the self-electrostatic fields can be estimated from

(32). We find from (32) that dyl’,,e,f/yO~’ = 0.0036. From

(25) we see that the initial spread in yl’ can be neglected if

it satisfies the following requirement, dyl’/YOl’ << 2v’ (YO~’ —

l)yol’ = 0.17. Clearly, in this example, the spread in yl’

due to self-fields can be neglected.

The possibility of high efficiency and power levels at

millimeter and submillimeter wavelengths with the electron

cyclotron maser makes it an attractive device for plasma

heating. The frequencies required for heating at either the

electron cyclotron or upper hybrid frequency are in excess

of 120 GHz (A = 2.5 mm) for reactor-type Tokomaks [28].

The cyclotron maser appears to be the only viable source

for producing the required power efficiently at such high

frequencies. Plasma heating using cyclotron maser devices

has been demonstrated in the USSR on the TM-3 Tokomak

[29]. In these experiments the electron cyclotron resonance

at A = 5 mm was used. It has been estimated that an

experimental power reactor would require N 100–250 MJ of

supplemental heating in 2–6 s [30]. This is a continuous

wave requirement of S 50 MW at a frequency of 280 GHz

(1 = 1.07 mm), assuming electron cyclotron heating and

the reactor parameters of [30]. On a large device these

requirements may be achieved by employing several maser

devices simultaneously.

APPENDIX A

The linear dispersion relation can be recovered from the

self-consistent nonlinear equations derived in Section 111

[see (1) and (13)]. To facilitate the calculation, we take the

limit where the Larmor radius of “the electrons is small

compared to the characteristic transverse scale length over
which the fields vary, rzx << a. In this approximation the

fields take the simplified form E, = Eo(t) cos (coot + a(t))

and Bz = O, where the x dependence has been removed

because in the small Larmor radius limit, k,,(x – a) % nx/a.

In the linear approximation the magnitude of the particle

velocity /31(t) and rotational frequency ~(t) are expanded as

where ~~ ‘1) << j?ol and ~ (1) << Qo/yol are slowly varying

functions of time and are linear in the wave amplitude

Eo(t). In this regime it is appropriate to set Eo(t) = 80
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exp (r~t) and a(t) = Aco~t where r~ << COOis the linear

growth rate and Aco~ << ~0 is the linear frequency shift.

Substituting (Al) ,into the orbit equations (13), we obtain

the following slow time scale equations:

#l(l)(f) = ‘el&OerLf sin (~~f + +.)

2yoL3?noc
(A2)

_ [e180erL’

2~01yoLmoc
Cos (acof + do) (A3)

where do = O. — QO/yol + Aco~. In (A3) the approxima-

tion yl(t) % YO~ + DOlY013Pl(1)(t) is used. The linearized
expression for the y component of particle velocity is

“~(’)’’)sin(st + 4

J

+Cpol t Ij(’yt’) d“ Cos
o (:’+4<

Solving (A2) and (A3) for times much longer than a growth

time, t>> l/r~ yields

(A4)

where & = O. + Aco~, D2 = &02 + r~2 and ~. ~(l)(t’)

dt’ <<.1. The equations governing the frequency shift and

growth rate [see (lOa) and (lOb)] in the linear approxima-

tion become

Ielcro ~oti
~orL&o exp (rLt) = —

“1+2”’7 J

277

dt ‘ d@otj,(q50,t ‘) COS (fit ‘ (A5b)
o

where oy(+o,t) is given by (A4). Since Aw~/coo, r~/coo << 1

and co. z ck”, we approximate COO*+ c2k.2 by 2C002 on

the right-hand side of (A5). By multiplying (A5b) by ~~,
adding it to (A5a), and performing the integrals over t‘ and

@o, we arrive at the linear dispersion relation

(0)’ – C’k:) ==*

“(

1 _ f?ola co

(co – Qo/yoL) 2 (co – Qo/yoL)2 )
(A6)

where co = co. -t AO~ + ir~. This result is identical to the

dispersion relation given by (1) for waves of zero wave

number, when Vol << (aQo/yol)/n.

APPENDIX B

One of the objectives of this paper is to determine the

efficiency of electromagnetic energy flux radiated by a beam

undergoing the electron cyclotron maser instability. The

general law governing the laboratory frame efficiency of

conversion of beam to electromagnetic power in terms of

beam frame energy efficiency is derived.

The analysis in the body of the text has been performed

in a rather special frame in which beam axial velocity U.,,

and wave group velocity Ugboth vanish. The justification

for choosing this frame is that the growth rate maximizes

when U. II = v~; therefore, by transforming to the beam

frame, the axial beam velocity and the wave group velocity

vanish simultaneously. In the beam frame the wave is at

cutoff having an infinite axial wavelength k. = O. In what

follows the two frames are distinguished by denoting beam

frame variables by primed quantities and laboratory

variables by unprimed quantities. The notation in this

Appendix should not be confused with that in the text

where unprimed quantities refer to the beam frame.

In the laboratory frame the axial electromagnetic energy

flux density 5’= = (c/4z)(E x B). 2= is found by a Lorentz

transformation of the beam frame fields [derivable from

(6)] and takes the form

~. = -&Yo112poll(&’(t) cos (oo’i -t a’) sin kn(x – a))z

(Bl)

where POII = V. n/c, O. II is the axial beam velocity in the
laboratory frame and yell = (1 – /?O1l2)- 1’2. Using (B]),

the temporal and spatial average of the electromagnetic

power in the laboratory frame, flowing normal to the

cross-sectional area 2aL, is

‘f = ~ Yo112P011(Eo’)2aL (B2)

where L is the length of the waveguide as shown in Fig. 2.

From conservation of field and particle energy [see (16)],

we obtain an expression for the maximum electric field,

occurring at saturation, in the beam frame:

E o ,s‘ = V’i Bo#’((Do’/(f20’/y o))1)2/2

“ (Yo~ – (y I’)S)l’2(YOL’)- 1’2. (B3)

Expressing the electric field amplitude at saturation [see

(B3)] in terms of the beam frame energy efficiency, q’ =

(Y.I’ – <Y~’),)/(Yo~’ – l), and substituting it into 032)

gives for the radiated power in the laboratory frame

@o’ (70L’ – 1) abl’. (B4)
Pf = ; Yo112Bo@132(!.&’ —Qo’/yol’ YOL’

The efficiency of conversion of beam to electromagnetic

power in the laboratory frame is
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where Pb = ool,c/?o,1 (yO — I)mocz is the beam power, OOis

the particle surface density, and y. = (1 – PO,,z –
2 – i 12 combining (B4)and (B5) and udng the relation-

801 ) .
ship a(Bo~’)2aIo’/(47rrrroc2 Qo’) = Oo’, we obtain

q = tiyol, 2 (YOL’ –1),

U(J (yO–l) ‘“
(B6)

Applying the relativistic transformation: O. = oo’yo/yol’

and YOII = yo/yOl’ to (B6), the power efficiency takes the
simple form

YO(YO1’– 1) ~,q= (B7)
YO1’(YO– 1) “

For a more direct derivation of (B7), we consider the

relativistic Lorentz transfot-mation of total field energy in

the beam frame to the laboratory frame. Since the field

momentum in the beam frame is zeroj we have

Wf = YOll J’1’f’ = yo,lq’wb’ (B8)

where Wj and Wb are the total field and particle energy in

the laboratory frame. The power in the electromagnetic

field can be written as

PI = VOII WJI.AZ = Vollrl’wb’/Az,
(B9)

where Az is the axial extent of the volume element which

contains the total field energy Wf. The total beam energy

Wb’ in the beam frame can be written as

Wb’ = qb’(yo~’ – l)moc2AAz’ (BIO)

where A = 2r~L is the cross-sectional area of the beam and

Az’ is the axial extent of the volume element in the beam

frame. Substituting (BIO) into (B9) and using the relation-

ships q~’ Az’ = q~ Az and y.,1 = yo/yo~’ yields the result

pf = 70(YOI’ – 1)
r’l’Pb

YOL’(YO – 1)

which defines the efficiency transformation in (B7).
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