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The Linear and Self-Consistent Nonlinear Theory
of the Electron Cyclotron Maser Instability

P. SPRANGLE anp A. T. DROBOT

Abstract—In this paper the linear and nonlinear theory of the
electron cyclotron maser instability is considered. The configuration used
to study the maser instability consists of relativistic electrons. gyrating
about and drifting along a uniform magnetic field within a parallel plate
waveguide. Relativistic effects associated with the gyrating electrons are
responsible for excitation of the fransverse electric mode in the waveguide.
Linear theory shows that the growth rate maximizes when the axial beam
velocity coincides with the axial wave group velocity of the excited
electromagnetic wave. This allows us to perform the nonlinear analysis in
a frame where both the axial wave number and axial beam velocity
vanish. We have found that the maser instability exists only if the per-
pendicular beam energy exceeds a threshold value. Our analysis also
describes the temporal nonlinear evolution of the field amplitude and
frequency of a single excited wave. The nonlinear wave dynamics are
self-consistently determined from the nonlinear particle orbits through
the force and wave equations. The nonlinear analysis shows that there are
two possible mechanisms for the saturation of the unstable wave:
1) depletion of the available free energy associated with the rotating
particles and 2) phase trapping of the gyrating electrons in the wave.
The initial beam parameters determine which of the two mechanisms is
responsible for saturation. Competition between the two saturation
mechanisms leads to a peaking in the energy conversion efficiency as a
function of beam energy. Numerical results of the nonlinear formalism
show that energy conversion efficiencies from the particles to the wave
can be as high as 60 percent in the beam frame. Furthermore, by appro-
priately contouring the external magnetic field, among other things,
efficiencies as high as 70 percent can be realized.

I. INTRODUCTION

N THE cyclotron maser instability electromagnetic
I radiation is generated by relativistic electrons gyrating
about an external magnetic field. The bunching process in
the maser instability is a relativistic effect due to the energy-
dependent electron cyclotron frequency. The excited wave
frequency is near the Doppler-shifted electron cyclotron
frequency of the gyrating electrons. The free energy for the
maser instability resides in the rotational energy of the
electrons. To make this source of energy from a streaming
electron beam available for the generation of radiation, a
redistribution of electron energy is needed. For example,
converting streaming to rotational energy can be accom-
plished by propagating the electron beam through a
spatially varying external magnetic field. This conversion
process is the classical equivalent of producing inverted
population levels in molecular masers by pumping.

The electron cyclotron maser instability is particularly
promising for efficient generation of millimeter and sub-
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millimeter radiation. In this part of the electromagnetic
spectrum more conventional devices are severely limited in
both power and efficiency. Such devices as the traveling
wave tube or magnetron rely on a slow wave structure for
their operation. The radiation wavelength from these
devices is typically on the order of the structure period.
Power density as well as voltage breakdown considerations
place a lower limit on the dimensions of the structure
depending on the efficiency and radiated power require-
ments. Therefore, these slow wave devices are not par-
ticularly suited for efficient generation of large fluxes of
radiation at millimeter and submillimeter wavelengths. The
electron cyclotron maser mechanism, on the other hand,
does not rely on the fine structure of a waveguide or
cavity, and thus efficient operation at millimeter and
submillimeter wavelengths is possible. g

The linear mechanism of the cyclotron maser was first
proposed by Twiss [1] classically and later quantum
mechanically by Schneider [2]. Shortly after the work of
Twiss, Gaponov published a paper on the classical theory
of the cyclotron maser [3]. In 1959, Pantell published what
was perhaps the first experimental work involving the
electron cyclotron maser mechanism [4]. In this experiment
radiation at 2.5-4.0 GHz was produced from a 1-kV 3-uP
electron. beam. Pantell suggested that the radiation was
caused by the coupling of the TE,; waveguide mode to the
backward traveling cyclotron wave on the magnetized
beam. It was Hirshfield and Wachtel who performed the
first experiment that definitely confirmed the existence of
the electron cyclotron maser mechanism [5]. Apparently,
because of a lack of understanding of the nonlinear
dynamics, the observed efficiencies in the initial experiments
were low, <2 percent. In this early work the cyclotron
maser was operated both as an oscillator and as an amplifier
at millimeter wavelengths [5]-[9]. The radiated power
achieved in these experiments was as high as 1 kW [8].
Nonpulsed low-current electron beams were used through-
out the early experiments. ,

The advent of intense pulsed relativistic electron beams
has renewed interest in the cyclotron maser instability as a
source of high-power microwave radiation. These intense
electron beams use a fleld emission diode and typically
carry a current of <100 kA, a voltage of <5 MeV, and last
for approximately 50 ns. Microwave radiation at multi-
megawatt levels [10] and as high as 1 GW [11] has been
produced using these intense relativistic electron beams. By
operating the cyclotron maser as a single-stage amplifier, a
17-dB gain was obtained [12]. In general, the emitted
radiation was narrow band with a coherence time > 50 ns,
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and was also spatially coherent [13]. None of the experi-
ments using pulsed intense electron beams attained
efficiencies greater than about 2 percent. Our analysis shows
that there are a number of reasons for the observed low
efficiencies with intense relativistic electron beams.

The highest reported efficiencies with a cyclotron maser
device were obtained in the Soviet Union using thermionic
diodes [14], [15]. In the experiments by Zaytsev et al. [14],
12-kW CW at 2.78 mm was reported using the fundamental
cyclotron mode. Experimental efficiencies in this case were
31 percent. Interaction at the second cyclotron harmonic
produced an output power of 1.5 kW CW at 0.92 mm with
an efficiency of 6.2 percent. Using the second cyclotron
harmonic, Kisel’ er al. [15] obtained output powers of
10 KW CW at 8.9 mm with efficiencies of 40 percent. In the
pulsed electron mode, power levels of 30 kW at 43 percent
efficiency were reported.

Work on the linear theory of the cyclotron maser shows
that the instability is due to the coupling of the supra-
luminous TE waveguide mode and a beam cyclotron mode
[10], [16]-[19]. The instability may be either absolute or
convective in nature. For a review of the theory on excited
nonlinear oscillators as applied to the cyclotron maser, see
the article by Gaponov et al. [20].

To our knowledge, the first nonlinear evaluation of the
electron cyclotron maser mechanism involved numerical
integration of the electron orbits in fields of either constant
amplitude and/or constant frequency [16], [21]-[25].
These nonlinear theories do not fully treat the particles and
wave dynamics in an inherently self-consistent manner.

In this paper a comprehensive study of the self-consistent
nonlinear evolution of the electron cyclotron maser
instability is presented. We have included both a time-
dependent frequency shift and a time-dependent field
amplitude in our analysis. A rather simple physical picture
of the nonlinear behavior of this instability shows that
there are two mechanisms responsible for wave saturation.
The analysis is self-consistent in that the particle and wave
dynamics are treated as a unit. Our parameter study
indicates that the maser instability can be an efficient
mechanism for the production of high-power radiation,
particularly at millimeter and submillimeter wavelengths.
Saturation efficiencies at the fundamental waveguide mode
and cyclotron mode are obtained. A method of externally
controlling the saturation process, and thereby further
improving conversion efficiencies, is discussed.

The physical mechanism of the electron cyclotron maser
is described in Section II. Properties of the linear dispersion
relation are discussed in Section TI1. Here simple expressions
for the linear growth rate and frequency shift are obtained.
The linear theory indicates that the growth rate maximizes
when the axial beam velocity is equal to the group velocity
of the excited wave. This fact can be used to simplify the
analysis by performing all calculations in the beam frame
which now coincides with the cutoff frame where the axial
wave number k, vanishes. The results are then transformed
back to the laboratory frame. In Section IV we derive the
equations for the nonlinear growth rate and frequency
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shift of the excited wave. The nonlinear single wave
formalism treats both the particle and wave dynamics
self-consistently. The equivalence of our temporal model
with the steady-state spatial growth of a wave in an
amplifier is pointed out. A number of simplifying assump-
tions, such as the single wave approximation and neglect of
initial beam temperature and space charge effects, have been
made in our analysis. The conditions for the validity of
these approximations are discussed in Section V. Section VI
describes the two nonlinear saturation processes of the
cyclotron maser instability. There we show that the
depletion of free energy and/or particle phase trapping is
responsible for wave saturation. The dominant mechanism
depends on the initial choice of beam parameters. Simple
analytic expressions for the field amplitude at saturation are
obtained. From the slow time scale orbit equations we
obtain a constant of the motion for a fixed amplitude and
frequency field. This constant is used to examine the
nonlinear particle orbits in phase space. Section VII contains
the numerical results of our formalism for a wide range of
beam parameters. These results include field amplitudes and
efficiencies at saturation. Comparison of these results with
the analytic expressions given in Section VI is made.
Methods for improving the efficiency at saturation are also
discussed and examples given. Section VIII contains a brief
discussion of our results as well as possible applications for
the cyclotron maser. The low experimental efficiencies with
intense relativistic electron beams for the cyclotron maser
are discussed in the light of our theoretical results. A
detailed example showing how our results can be applied to
practical situations to estimate power efficiencies and
levels of the radiation field is given. In Appendix A we show
that the linear dispersion relation can be recovered from the
nonlinear formalisn\l. Because our analysis is performed in
the beam cutoff frame, we include a derivation of the
efficiency transformation from the beam frame to the
laboratory frame in Appendix B.

II. PHYSICAL MECHANISM

Insight into the physical mechanism responsible for the
electron cyclotron maser instability can be obtained from
the particle trajectories shown in Fig. 1(a) and (b). This
figure shows the orbit dynamics of sample electrons initially
uniformly distributed along a gyro orbit. The electrons are
rotating in the counter clockwise direction about a uniform
and constant magnetic field Byé,. Without loss of generality,
we assume the electron velocity in the z direction to be
zero. The initial radius of the sample electron ring is the
Larmor radius ro;, = vy, /{Q/70,) where vy, is the initial
perpendicular velocity, Q, = [e|By/mqc is the nonrelativistic
cyclotron frequency, and 75, = (1 — we,2/cH)™Y? is the
relativistic factor.

The introduction of a small constant amplitude electric
field Ey(t) = g, cos (wyt)2,, as shown in Fig. 1(a), will
alter the particle orbits. We first examine the particle
trajectories when the frequency of the electric field is equal
to the initial relativistic cyclotron frequency m, = Qu/y,,.
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Fig. 1. The mechanism responsible for the electron cyclotron maser

illustrated by orbits of test particles in velocity space in the presence
of a small external field. (a) Initial particle positions. (b) Bunched
particles after several cycles.

The time rate of change of the particle energy is de,/dt =
—lelv,(1)E,(t) where v,(t) is the y component of particle
velocity. With the initial chioice of field direction shown in
Fig. 1(a), particles 8, 1, and 2 will lose energy and tend to
spiral inward. The relativistic cyclotron frequency of these
particles will increase, since y, decreases, and their phase
will tend to slip ahead of the wave. Particles 4, 5, and 6, on
the other hand, will gain energy, their cyclotron frequency
will decrease, and they will tend to spiral outward. The
phase of these particles will tend to slip behind the wave.
After an integral number of wave periods, the particles will
become bunched around the positive y axis. Particle
bunching is, therefore, caused by relativistic effects, since
the rotational frequency of the electrons is energy dependent.

To obtain a net exchange of energy between the particles
and wave, w, must be slightly greater than Qg/y,,. If
wo 2 OQofvoL, the particles on the average traverse a
coordinate space angle less than 27 in a wave period 27/w,.
All the particles will then slip behind the wave, and the
distribution of particles after an integral number of wave
periods will be bunched in the upper half plane as shown
in Fig. 1(b). As a resuit of the phase slippage between the
particles and the field, the net kinetic energy of the ensemble
of particles decreases. Conservation of total energy implies
that the field amplitude increases, resulting in instability. If
w, remains greater than Q,/y , the particles will continue to
slip behind the wave.

Depending on the initial beam parameters, the group of
bunched beam particles may 1) continue to slip behind the
wave, or 2) initially slip behind the wave, reverse itself, and
begin to oscillate about the positive y axis. In either case,
the bunched particles will eventually appear in the lower
half of the transverse plane after an integral number of wave
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Fig.2. The electron cyclotron maser configuration in plane geometry.

periods. When this occurs, the particles will gain energy and
the wave amplitude will begin to decrease.

III. LINEAR THEORY .

Using the Maxwell-Vlasov equations, the linear theory
of the electron cyclotron maser instability has been derived
in both cylindrical [10] and Cartesian geometry [19]. The
electron beam and waveguide configuration employed in
[19] and shown in Fig. 2 is basically the same model used
in the present nonlinear analysis. In Fig. 2 a beam of
gyrating and drifting particles is assumed to have the same
perpendicular velocity v,, and parallel velocity v, with
respect to the applied axial magnetic field B,. The guiding
centers of the particles lie midway between the two
conducting plates. The system of particles and fields is
assumed independent of the spatial y variable. The field
components within the waveguide are those of a TE,, mode
(ie., E,, B, and B, are the only nonvanishing field
components). The functional dependence of the fields on z
and ¢ has the form exp (i(koz — t?)). The linear dispersion
relation in the laboratory frame for the above configuration
is

w? — 02(k02 + kn2) = 5nz(0)b2/Vo)

. [ (0 — kovon)an _
(0 — kovon — 1Q/y0)

BO_LZ((DZ - czkoz)Van ]
(0 — kovoy — I1Q/70)*
ey

where k&, = mn/2a is the perpendicular wave number,
n=123-- is the waveguide mode number, §,, =
(A + (=Y, w,?> = 4nle|oy/moa is the modified plasma
frequency, o, is the surface charge density of the beam in
the x-y plane, / = 1,2,3 is the magnetic harmonic number,
Yo = (1 — 1’0||2/C2 — g, %}, Qo = |e|Bo/moc, o, =
voules Qu = X(I?/x,> — 1) d(Uy(x,))*/dx, W, = (dJ(x,)]
dx,)?, x, = Bo1ck,/(Qo/70), and J, is the Bessel function of
order I. If n + [/ is odd, the TE,, mode is stable since the
right-hand side of (1) vanishes [26]. The first term in the
bracket on the right-hand side of (1) is always stabilizing
while the second term is always destabilizing. Furthermore,
the frequency of the unstable wave in the rest frame of
the electrons is slightly greater than the cyclotron frequency,
Yolw — kovg)) 2 Qo. We have seen in Section II that this
requirement is necessary for a phase slippage to occur
between the particles and field. It is clear from the dispersion
relationship in (1) that the maximum growth rate of the
modified TE,;, mode occurs for frequencies and wave
numbers near the intersection of the vacuum waveguide
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mode w? — c*(ky* + k,*) = 0, and the cyclotron mode
@ — kovg; — 1Qo/y9 = 0. When the perpendicular velocity
of the particles vy, vanishes, the cyclotron wave is a positive
energy wave. Since the waveguide mode is also a positive
energy wave, there can be no instability for vy, = 0. If,
however, vy, # 0, the cyclotron mode splits into a positive
and negative energy polarity wave as can be seen from the
fact that (0 — koo — 1Q4/v0)* appears in the denominator
of the destabilizing term of (1). The coupling of the negative
energy cyclotron wave and positive energy waveguide mode
is responsible for the instability. In the limit of vanishing
beam density w, — 0, or vanishing perpendicular velocity
vo, — 0, the opposite energy polarity cyclotron waves co-
alesce and become degenerate.

Seeking a solution to (1) near the intersection of the
modes, weset © = @, + dw, where |dw,| « w, and w, =
elko® + k)Y = kovey + 1Qo/yo. Substituting w = w, +
dw, into (1) and keeping terms to order (w,)® yields the
following relation:

53600 - 3A2w05(1)0 + 3an AZ(DO = 0 (2)
where

Aw, = (IQO/YO(énlwbz/(6y0w0))Qnl)1/2
and
Z, = (xn/l)z(Van/in)("Qo/}’o)-

The solutions of (2) yield complex roots when Z,, >
(2/3)Aw,. This condition can be stated as a threshold
condition for instability, requiring that the perpendicular
velocity be greater than a critical value [27],

Bor > Bi it
where

ﬁ.].,crit = I(Q()/)’o)(an/Wnz)”2
’ [(2/27)5;116%2 Ol (70@0IQ0/70)] ! /4/Ckn-

At the critical value of §, the stabilizing and destabilizing
terms in (1) just balance each other. The beam has no free
energy available for driving the instability when y,, =
Vierio Where p; o = (1 — ﬁi,crit)_l/z' The roots of (2)
can be easily evaluated in two regimes: 1) o, 2 B crios
and 2) fo, > B e In the first regime, the perpendicular
energy of the beam is close to the critical value and the
saturation is caused by the depletion of free energy. In the
second regime, the perpendicular energy of the beam is well
above the critical value and, as we will show in Section VI,
the saturation mechanism for the instability is phase
trapping of the particles by the excited wave.

Case 1)

Here, B, 2 B o and the second term on the right-hand
side of (1) is larger but comparable to the first term. The
linear-frequency shift and growth rate take the form

Aw; = Re (bwy); = ((3/2)Z,, A’wy)'? ~ Aw, (3a)
I; = Im (bw,);
= 37 V(Awg)**(3Z,,/2) " (3Z,[2)" — A’wy)'”?
X (Zy Awy — 2 Alwo)3)V2. (3b)
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Fig. 4. Typical dispersion curve for cyclotron maser instability.

This case is for yo; = 1.2, wb/\/m = 0.05wq, wo = cky = 1Q]70,,
and/ =n =1,

The growth rate for this case is proportional to the fourth
root of the surface charge density.-
Case 2)

Here, By, » B . @and the second term on the right-hand
side of (2) dominates. The linear frequency shift and growth
rate of the wave are

Aw;; = Re (bwy);; = (1/2)3Z, AZ000)1/3
r 312)2(37,, A2w0)1/3.

(4a)
(4b)

ii

I

i = Im (dw),;

The growth rate for this case is proportional to the third
root of the surface charge density .

The condition that the nth waveguide mode and the /th
synchronous mode intersect on the dispersion curve limits
the value of x,. It is easy to show that x, is bounded by
0 < x, < I Fig. 3 depicts the functions W,, and Q,, as
functions of x, for I = 1, 2, 3, and 4. Fig. 4 shows the
dispersion diagram for the cyclotron maser instability when
vo = 0, Wy = ¢k, = IQ[yo and [ = n = 1. Note that the
cyclotron mode splits into two branches of negative and
positive energy polarity. The negative energy cyclotron
mode couples to the positive energy TE guide mode
resulting in an instability. The growth rate maximizes at
ko = 0. If the cyclotron frequency were greater than the
guide cutoff frequency Qgfyo, > ck,, the growth rate
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case is for yor = 1.2 and w,/ v E = 0.05w¢, where oy = ck, and
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would have two peaks at |ky| > 0, symmetric about the
ko = 0 axis. The maximum growth rate for Qu/yo,, > ck,
is always less than the maximum growth rate for Q,/y,, =
ck,. This can be seen in Fig. 5, where growth rate contours
are shown as functions of (Qy/y,,)/(ck,) and (cky/ck,). We
note that, in general, the growth rate is maximum when the
wave group velocity v, equals the axial beam velocity v.
This becomes apparent if we transform to the beam frame
(vo; = 0) and note that for fixed f,, and k,, the growth
rate is largest when ky, = 0 (i.e., when wy = IQy/yq = ck,).
At k, = 0, the group velocity vanishes and, therefore,
v, = o = 0Oin this frame. Since both v, and v, transform
in the same way, the growth rate maximizes when v, = v,
in all frames.

IV. NONLINEAR FORMALISM

In this section the basic equations governing the nonlinear
behavior of the electron cyclotron maser instability are
derived using a single wave model. The validity of the single
wave approach will be examined in Section V.

In our procedure, we express the nonlinear dynamics of a

single wave in terms of an ensemble average of the nonlinear
particle orbits. The particle orbits are related to the fields
through the relativistic Lorentz force equations. The
resulting wave and force equations are then numerically
solved to obtain the self-consistent behavior of the particles
and the field. This analysis describes the nonlinear evolution
of the field amplitude and frequency as a function of time.
The beam and waveguide configuration shown in Fig. 2 is
chosen as our basic model.

We have noted in Section III that the linear growth rate
for the excited TE,, mode maximizes when the axial beam
velocity and the wave group velocity are equal. We chose
to analyze this situation since we are interested in the
regime of maximum wave growth. Furthermore, for
convenience, we transform to a frame in which both the
axial beam velocity and wave group velocity vanish. Since
the group velocity is now zero in this frame (cutoff frame),
we note that the axial wave number of the wave is also
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zero. The electric field, in the cutoff frame, of the vacuum
waveguide mode has the form

E(x,t) = —Ey(t) cos (wet + aft)) sin (k(x — a)) (5a)

where k, = nn/(2a) and » is a positive integer such that
E,(x,t) satisfies the appropriate boundary conditions at
x = +a. In (5a) the frequency w, is a constant, while the
amplitude E4(¢) and the frequency shift du(z)/0r are weak
functions of time (e.g., 8 In (Ey(2))/0t, da(t)/0t < wg). The
amplitude E,(¢) can be expressed as

Ey(t) = &y exp ft (") dt’ (5b)

]

where ¢, is the initial field amplitude and I'(¢) is the time-
dependent growth rate. We note that in the linear regime of
the instability the frequency shift and growth rate are
constant and equal to their linear values du(¢)/0t = Aw,
and I'(¢) = Ty,

Associated with the electric field in (5a) is the vector
potential 4,(x,t) given by
Ay(x,t) = (c/oo){(1 — &[(wo)Ey sin (wot + @)

+ (Eolwy) cos (0ot + )} sin (k(x — a)) (6)
where A,(x,r) is valid to first order in the small parameters
I'(t)/wy and a(t)/wy. The time evolution of Ey(¢) and a(z)
is determined by the particle current density J,(x,z) through
the wave equation for 4,(x,t):

(0*Jox® — ¢7% 9*|ot¥)A4, = —4dnc™ MU, Q)

Substituting (6) into the wave equation and keeping only
lowest order terms in the small parameters I'/w, and /o,
yields the relation

{(we? — c*k,r + (c*k,> 4+ w)(/we))E, sin (Wt + )
— (K, + woP)(Eqolwg) cos (wof + o)} sin (k,(x — a))
= —dnwyJy(x,t). (8)

The current density for a discrete set of particles is given by
N

:Zl Uy(¢i,t)5(x - x(¢iat))

le

{go
N ®

J(x,t) = —

where g, is the surface number density in the y—z plane, N
is the number of particles on a gyro radius, ¢; is the initial
velocity space angle of the ith particle measured with
respect to the x axis, and x(¢;,?) is the x position of the ith
particle. In the limit as N — oo,

NTEo e |

0

2

doq

where @, replaces ¢;. In (9) the velocity component v, of the
ith particle is a function of only (¢;,?) since we assume an
initially cold particle distribution in velocity. Our theory
can include an initially thermal particle distribution, which
would add an average over the initial velocities in (9). We
will show later in (25) that for an initial energy spread
0y, < 2y9, Aw/(Qo/701), the particle distribution can be
considered monoenergetic at 1 = 0. The present analysis is
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valid when the inequality in (25) is satisfied. This does not,
however, prevent the particles from thermalizing as the
instability develops. The wave equation can be separated
into equations for Ey(r) and a(¢). By multiplying (8) by
sin (k,(x — a@)), integrating across the waveguide from
x = —ato x = a and operating on the resulting equation
with
f’””ﬂwo”) ) {sin (wot’ + a(t’))}
dt , ,
. cos (wot’ + aft"))

we arrive at the following expressions, which are valid to
order I'/w,, d/wq:

; 10
O = G ey [~ o
t+2n/(wo +&)
+ {2|e|600) (0) + a) J. dt/<vy(¢0,t’)
- sin (k(x(¢g,t") — a)) sin (wet’ + oc(t’))}}
t+ 21/ (wo+a) -1
. {f E(t') sin® (wgt’ + a(t")) dl"} ]
t
(10a)
o 2!@!0’ ' ) » t+2n/(wo +a)
I'(t) = 0 ‘ 0 wolwy + & f dr’
( ) woz + czknz a 0( (1] ) .

*0y(@o,t") sin (k(x(do,t") — @) cos (wot” + 0t(t’))>}

t+2n/(wo+ &)
: {f E(t") cos® (wet’ + a(t")) dt’}“'
t
(10b)

In the preceding equations, { > = (2m)™! [3* dd, is the
ensemble average over the initial particle phase ‘We note
that the temporal averages in (10a) and (10b) are performed
over the actual wave period 2n/(w, + &). Equations (10a)
and (10b) describe the linear as well as nonlinear evolution
of the wave frequency and amplitude in terms of the
particle orbits. The only restriction placed on I'(¢) and «(r)
is that they vary little in a wave period 27/(w, + &).

The right-hand side of (10a) and (10b) contain the
details of the particle dynamics which are related to the
fields through the relativistic orbit equations. Defining
B = B. + iB, where B, = v,/c and B, = v /c, the relativistic
orbit equation can be put into the form

ile|B,(x,t) , —ilel
d YiMoC
(1 = B(B — BYDE,(x,t) (11)

wherep, = (1 — BB¥) ™12, E,(x,t) = —c ™1 04,/01, B,(x,1) =
0A,/0x, and x is given by dx/dt = ¢(f + p*)/2.

We now choose the solution for (11) to be of the form

B(¢ost) = Bi(bost) exp (id(do,1)) (12)
where B,(¢o,t) = (B> + B,HY? = (BB*)'/* and

$(ort) = f Yot dt’ + $o = tan™" (B,/B.)

iQ_Qﬂ+

Y1 YimoC

dpjdt =
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is the velocity space angle at time r. Substituting (12) into
(11) and equating real and imaginary parts, we obtain the
following fully relativistic equations for the velocity
magnitude and velocity space angle

By _ ZIAEXD g1 g(ur) (132)
dt > mge

4 _ Qo _ B (oo bipo ) + 1B (3
dt Yoo YMocpy YiMoc

where y, = (1 — B,%)7Y? and dx/dt = cf, cos ¢p(¢o.t).
Equations (5), (10), and (13) form a set of coupled nonlinear
equations which describe the evolution of the electron
cyclotron maser instability in the single wave model.

In Appendix A we show that the results from linear
theory can be recovered from these equations. The orbit
equation in (13) when written on the slow time scale yields
a constant of the motion which is discussed in Section VI.
The constant is useful in forming a qualitative picture of the
trapping and saturation process.

The amplitude of the electric Ey(7) can be related to
average decrease in particle energy through the energy
conservation equation, Conservation of total energy within
the waveguide implies that

l—f (e,(x,t) + gx,t)) dx = ¢ (14)

2a J_
where ¢,(x,1) = (E}(x,t) + B,*(x,1))/8x is the field energy
density, 8,(x,7) = ao{(WPost) — 1) 8(x — x(¢o,1))>moc? is
the particle energy density, and &, = (0o/2a)(yo — D)moc?
is the average total energy density. Substituting E, =
—c™! 04,/0t and B, = 04,/0x into (14), where 4, is given
by (6), and performing the spatial average as well as a
temporal average, leads to the following expression for

Ey(t):
(1 + (Ck) (1 — 2o’c/w0))_1/2

@
“(or — yuldo,t M (15)

where w, = 4n|e|?a,/(mya) is a modified plasma frequency
and y,, is the initial gammad of the particles. In deriving
(15), terms of order higher than I'/w, and &/w, have been
neglected. Since ck,/w, ~ 1 and d/w, < 1, the expression
for Ey(¢) can be simplified to

NG 8mye
le]

A simple analytic expression for {y (¢,,7)> at saturation
which will permit us to determine the maximum field
strength through (16), is obtained in Section VI.

Since our system of fields and particles is independent of
the spatial variable y, we note that the y component
of canonical momentum P, = y,mgv, — ¢~ 'le|ld,(x,t) —
Qomgx is a constant of the motion for each particle. The
conservation of total energy as well as the y component of
canonical angular momentum is monitored throughout the
numerical simulations of (10) and (13) to ensure consistency.

Ey(t) = 2moc

(16)

Eyt) = wp(¥or — {yu(@e)N'2.
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The nonlinear model developed in this section is directly
applicable to the experimental situation in which a wave is
spatially amplified in the streaming direction of a gyrating
beam. The saturation levels obtained with the present model
are directly related to the saturation levels in an amplifier
when the axial beam velocity equals the wave group velocity.
As pointed out in Section III, this situation corresponds to
a grazing intersection of the waveguide mode with the beam
cyclotron mode whenviewed on the dispersion diagram.
Furthermore, such a grazing intersection leads to an
absolute maximum in the temporal growth rate. In a
steady-state amplifier the input wave amplitude initially
grows exponentially, enters the nonlinear regime, and
saturates. If we follow a group of particles contained in a
thin cross-sectional slab of the beam, we note that the net
flow of total energy flux into this slab is zero since we only
consider the case where the axial beam velocity and wave
group velocity are equal. Therefore, in the reference frame
of the particles, the field amplitude evolves in time. This is
precisely the situation described by our model. With the
appropriate transformations (see Appendix B), the satura-
tion levels of the spatially amplified wave can be obtained
with the present temporal model.

- V. NATURE OF APPROXIMATIONS

A number of approximations have been made in
developing our nonlinear model. Among these are 1) the
assumption of a single unstable wave, 2) the assumption of
a single excited vacuum mode in the loaded guide and,
finally, 3) the initially monoenergetic beam approximation.
In this section the regimes of validity of these approxima-
tions are examined. We find that our model is valid for a
wide range of parameters.

To verify the validity of the single wave approximation,
the growth rate and field energy spectrum are examined.
Using a Taylor series expansion of the linear growth rate
about ky, = 0, I'(ky) = T(0) + (1/2)(0°T(0)/0k ko>, we
find that the half-width of the growth rate spectrum is
Ak = 2AI(0)/|0*°T(0)/0ko?))!/*. Since the field energy is
proportional to exp (2I'(0)¢), the half-width of the energy
spectrum after the field has e folded N times, t = N/T'(0) is

Sk = 2(In 2/N)V2(I(0)/|6T(0)/0k,2|)/?
= N™12(In 2)1/2 Ak.

Il

(17)

From the linear dispersion relation (1), we find that, for the
two cases discussed in Section III, the half-width of the
linear growth rate spectrum for case 1) (i.e., for = B cric
and wy = ¢k, = IQy/yo,) is
— 1/2
Ak, = 2+/6 (T0)/c) (&) (182)
. Aw,
and for case 2) (i.e., Bo, > B, oicand wy = ck, = IQy/y,,),
is

Aky; & wofc. (18b)

In (18a), I';(0) is the linear growth rate at k, = 0 as given
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by (3b). The half-width of the energy spectrum after the
field amplitude has e folded N times is for case 1)

_ - 1/2
Sk; ~ 246 (In 2)'2N =YX (0)/Awy) (5“2) wofc
Do
(19a)
and for case 2)
Sk = (In 22N ~2g Jc. (19b)

The frequency spread corresponding to the wave number
spread in (19a) and (19b) can be estimated from the vacuum
dispersion relation ® = (wy*> + ¢%k,?)'/%. The frequency
spread is given approximately by dw =~ (cdk/wy)’w,. From
the expressions for the half-widths of the energy spectrum
in (19a) and (19b) and the frequency spread, we see that the
spectrum can be represented by a single wave if

N~V (0)/Awo)(Awe/me)? < 1

for case 1) and N™Y% « 1 for case 2). Typically, in the

examples we shall consider the number of e folds before the
wave saturates is N =z 15.

In the nonlinear analysis, the general form of the excited
wave was that of a single vacuum waveguide mode. In the
presence of a tenuous electron beam, this vacuum mode is
expected to be a good representation of the actual field in
the loaded guide. If the particle density is sufficiently large,
the field induced by the beam current density will couple to
more than one vacuum waveguide mode. Consequently,
the profile of the actual field will differ from the form
sin (k,(x — a)), used in the analysis. We now show that, in
the teriuous beam limit, the correction to the vacuum wave-
guide field is of order Aw/w, and can, therefore, be neglected.

To obtain a rough estimate for the correction to the
vacuum field, we assume that the particle current density at
the frequency o is produced solely by the vacuum mode
given in (5). To simplify the calculation we take x « a. The
electric field in the loaded waveguide is chosen to have the
form

E(x,t) = —E(1) cos (wot + o))

< Y a,sin (k,(x — a)) (20)
m=1

where Ey(1), wq, a(t), and k,, have been defined following
(5), and a,, are the constant relative amplitude coefficients
of the electric field. If corrections to the nth vacuum mode
are desired, we assume that the current density is produced
by the nth vacuum mode given in (5). Substituting the
vector potential associated with (20) into the wave equation
(7, we find

o0

Y [we® =k, + (k) + @o7)0 @y |Eo(t) sin (gt + o)

m=1

— (c%k,? + o) (Eojwe)cos (wot + oc)} a,sin (k,(x — a))

@

= —dnwyd (x,t).
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The current density in (21) can now be written as

Jy(x,t) = i Ja(t) sin k,(x — a) (22)
m=1
where
I.() = —(]elao/(Zna))(—1)('”+1)/2<vy(q50,t)>, for m odd
mil 0, otherwise

when k,x(¢o,t) « n/2. Combining (21) and (22) and
neglecting higher order terms, we find

2 Q (20 — FZ))
U
VoL D?

‘(COZ . clka)—l

2 2

- (I + y0.9)

~4)’ DZ( 57— 0w — B
oL

m o]

YoL
(23)

where m # n and the linear expression for v,(¢,,?) given by
(A4) was used. Comparing the right-hand side of (23) with
(A5a) shows that

- (@ = k) + (o + k%) Aojw)

a
wo? — c*k,?

m

which reduces to

L 2bofoy) |

o S ey (24)

since w, =* ck,. The coupling to other vacuum waveguide
mode is of order Aw/w,, and hence our original choice for
the electric field given in (5) is indeed reasonable.

In this paper we consider the beam to be initially mono-
energetic in the beam frame. The range of validity of this
assumption requires some examination. Since reference
will be made to quantities in both the laboratory and beam
frames, we shall denote the former with unprimed variables
and the latter with primes. It is clear that the cold beam
approximation will be valid if the total initial spread in y,’
satisfles 0y, « 2(yo, — <y.">s), where (y,’>, is the
average value of y at saturation. In terms of efficiency, this
condition becomes

071 Por” < 21'(yor” — Dfvos (25)

where n' is the beam frame efficiency defined as ' =
o — 10/ (yoL — 1). Since the unstable wave has an
infinite parallel wavelength in the beam frame, any spread
in v)" which does not violate the above inequality is
unimportant.

To define the beam qualities necessary for the validity of
our cold beam approximation, it is useful to express (25) in
.terms of laboratory frame quantities. The right-hand side of
(25) can be written in terms of laboratory frame quantities
by using the transformation rule for efficiency derived in
Appendix B, ie., 1 = n'(yo," — Dyo/(vo.'(vo — 1)) where
n is the power efficiency in the laboratory frame. Using the
results of Appendix B, the inequality in (26) becomes

2(00 — 1) 7
Yo

where y, = (1 = vg?/c* — vo,*/c?) ™2

0y vol < (26)
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A spread in the beam frame gamma Jy,’ can arise from
a) a finite beam temperature in the laboratory frame or, in
the case of a monoenergetic beam in the laboratory frame,
b) a spread in the velocity space angle of the particles.

In case a) only a temperature spread in the perpendicular
velocity is considered, so that v, = vy, + Av, where
Av, < vy, is the thermal component of velocity. Only
perpendicular temperature is considered since a parallel
temperature in the laboratory frame Ay, contributes a
higher order correction to dy,’ than Av, if Avy and Av, are
of ‘the same order. Since the perpendicular momentum is
frame invariant, yv, = y,’v,’, we find that the thermal
spread in y takes the form

Ay = + Yoy Ay’ (27

where o = (1 — vg%/c?)™!/?, v, is the axial laboratory
frame velocity, and Ay,” = 2(vy,/c)y,® Av,/c is the thermal
spread in y,’ due to Av,’ = 5 Av,. Substituting (27) into
(26) gives the following requirement for neglecting thermal
effects in v, : ‘

Ay/(yo — 1) < 21. (28)

In the preceding inequality the efficiency 5 is calculated
using the cold beam approximation. '

In case b) the particles have the same energy; however, a
spread in the velocity components exists. Consequently, the
particle velocity components in the laboratory frame can be
written as

(29a)
(29b)

where |Af] « 1 is the spread of the velocity space angle,
i.e., the angle between the total velocity vectors of the
particles. To first order in A6, we sce that o> + v, =
vo® + vo.”, so that the system of particles is monoenergetic
in the laboratory frame. The transformation rule for y from
the laboratory to the beam frame y* = yoyy(1 — vov;/¢?)
shows that the particles are not monoenergetic in the beam
frame. In the beam frame we find that

Ul = UOJ_ - vo_L A0

U” = UOH -+ Vo1 AO

70 = Yo + Ayl (30)

where yo," = yo/yo; and Ay," = Von)’o(vouvm/cz) Af. Sub-
stituting Ay’ into (26) gives a condition on the magnitude
of the maximum angular spread

e
Yo Yo “Voybor/C

allowed in the cold beam approximation. We will return to
conditions (28) and (31) in the next section.

One of the causes of energy spread in an unneutralized
beam is the self-electrostatic field. For the planar beam that
we have considered, the total spread in y,” can be shown
to be

(31)

OV serr R (W) Bor ' (Qo/v01 Meck)voL (32)

where u' = a)b’/(\/m ®,") and @y = Qofy,.". Con-
sidering (25), this imposes an upper limit on y', and hence
the beam current in the laboratory frame.
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V1. SATURATION MECHANISMS

In this section some qualitative arguments concerning the
saturation of the electron cyclotron maser instability are
made. There are two mechanisms which are responsible for
saturation of the unstable wave in the maser instability.
They are 1) depletion of the rotational free energy of the
electrons and 2) phase trapping of the gyrating particles in
the wave. Which of the two mechanisms is actually
responsible for saturation in a particular situation depends
on the initial beam parameters.

Case 1): Free Energy Depletion

As mentioned in Section III, the linear dispersion
relation [see (1)] gives rise to a threshold condition for
instability given by B¢, > B, .. That is, the maximum
free energy per particle available to the wave is

(33)

2
= V1,eri)MoC

where ¥, iy = (1 — B3 .50~ /2. If the beam particles were
to lose all of the free energy given by (32), the energy
conversion efficiency would be

Efree = (’)’OJ_

— (yor — Vl,criz) 34
T e - 9

where 7, 2 V1 e This, of course, is a rough approxima-
tion, since as the instability develops the particles warm up,
while the threshold condition was obtained for a cold beam.
Furthermore, as will be seen, competing processes such as
electron trapping may take pldace before the beam loses its
free energy. However, if y,, is slightly greater than y, .,
the expression in (33) will represent a good approximation

. to the actual conversion efficiency. Since, if Yo, 2 V4 cries
the particles lose all their free energy before thermalizing or
trapping takes place and the wave will be linearly stabilized.
If, however, yo; » 7. i1 the particles will phase trap in
the wave and saturation will occur before all the free energy
is used up.

Case 2): Phase Trapping

The condition for wave saturation due to phase trapping
can be viewed in a number of ways. First, we have noted in
Sections II and III that the frequency of the wave must be
slightly greater than the relativistic electron cyclotron
frequency Q/y,, for an instability to develop. Therefore,
initially we have

(35)
where Aw is the frequency shift which can be obtained from
the linear dispersion relation. Now, as the instability

develops the average y of the particles {y,> decreases until
o — Qu/{y.> = —Aw. At saturation {y, ) is minimum and

© = Qo/1d, = —Aw (36)

where {y,>, is the average value of y, at saturation.
Comparing (35) with (36), we find that at saturation the

o — Qofyor = Aw 2 0
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average change in the y of the particles (Ay, >, = Yo, —
{yL>s is given by

Ay s = 2y9; Avfo. 37

The efficiency of conversion of kinetic energy to field energy
n, when electron phase trapping is responsible for saturation,
is

1 = 2(Aw/w)yo1/(yor — 1) (38)
It should be noted that the efficiency in the beam frame
cannot be made arbitrarily close to 100 percent simply by
increasing the frequency shift Aw. The growth rate of the
field is a function of Aw and is nonvanishing for a limited
range of Aw. The relations in (37) and (38) are valid only
if Aew lies within the nonvanishing part of the growth rate
spectrum. To find the actual amplitude of the field at
saturation E, ,, we use the expression for conservation of
total energy given in (16). The maximum field amplitude at
saturation is easily shown to be

(39)

where it has been assumed that ¢/w, « 1 and ck,/w, = 1.
We now examine the nonlinear behavior of the particles
with the aid of a constant of the motion derived from the
orbit equations.
The orbit equations given in (13) can be written, in the
small Larmor radius approximation x < a, as

duy _ 1B (oo (o + Aw)) sin (6(r) + do)  (40a)
dt myc

d$ _ Qo _ lelEq cos ((wg + Aw)t) cos (§(t) + Po)
dr YL ulmoc

(40b)

where u, = v,B, is proportional to the transverse particle
momentum, and y, = (1 + u,%)"2. The field amplitude
E,, as well as the frequency w, + Aw, are considered fixed
and wg = Qy/y,, is the initial electron cyclotron frequency.
The particle momentum u;myc and time rate of change of
the velocity space angle d¢/dt consist of fast and slow time
scale variations. )

The fast time scale variation is associated with the wave
frequency or electron cyclotron frequency, while the slow
time scale is associated with the frequency shift Aw. The
nonlinear behavior is governed predominantly by the slowly
varying parts of u, and d¢/dt. Since (w, + Aw) — do/dt
changes slowly, the orbit equations in (40) wrltten on the
slow time scale become

duy _ le|Eo

L sin (A 4la
dt 2m0c @ @
g_;} = (wy + Aw) — Q + lelBo_ cos (1) (41b)

Yo 2mgcuy
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Fig. 6. Particle trajectories in velocity phase space as found from the
constant of the motion. The figure shows the boundaries of the
regions accessible to particles initially uniformly distributed between
0< i< ZﬂWithIli_ = Up1L.

where 1 = (wy + Aw)t — ¢(t) — ¢o. These slow time
scale orbit equations have the following constant of motion:

_ lelEy

oC

C u,(t) cos (M2)) + (wo + Aw)

(o + —”—“L) @)

wy + Aw

Each particle moves in phase space (#,,4) on C = constant
curves. These C = constant curves describe the particle
orbits when a constant frequency and constant amplitude
field are instantaneously switched on. This situation can be
realized by injecting particles into a field filled cavity. The
particle trajectories in phase space lie on the constant C
curves depicted in Fig. 6. The initial conditions for the
example shown in the figure are y,, = 1.05, u = 0.05,
Awlw, = 0.018, and |[e|Ey/(yowotnge) = 0.0025. In this
illustration the frequency shift is consistent with linear
theory and the field amplitude E, corresponds to roughly a
quarter of the value at saturation.

In Fig. 6 the particles are initially uniformly distributed
between 0 < 1 < 2rn with u, = u,,. The trajectory
followed by a particle is determined by its particular value
of C which is different for each particle. The particles have
access to a limited region of phase space, the boundaries of
which are shown in Fig. 6. Particles which initially lie on
closed C = constant curves are considered trapped even
though u, as a function of 1 is single valued. However, as
the particles travel along their C = constant curve, u, will
eventually become a multivalued function of A. Similarly,
for a growing field amplitude, particles can be considered
trapped if they lie on closed C = constant curves, long
before u, becomes a multivalued function of A. The
character of the accessible C = constant curves is
determined, among other things, by the value chosen for
E,. For sufficiently small values of E,, the particles will not
lie on closed C = constant curves and, hence, are not
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Fig. 7. The deformation of a monoenergetic beam in the presence of
a constant amplitude field showing the actual particle positions in
phase space. The curve for ¢ = t, indicates the initial positions,
and the one for r = ¢, the positions when the beam indicates
trapping.
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Fig. 8. The particle positions in phase space for a monoenergetic
beam deformed by a constant amplitude electric field at # = ¢, when
the particles have lost the maximum energy and are in a state
corresponding to saturation.

trapped. The value of E, for which the first closed C =
constant curve intersects the v, = u,, line determines the
field amplitude necessary for the onset of trapping. The
separatix separating the closed and open orbits first
intersects the line u, = uy; at A = 7. As larger values of
E, are chosen, the inaccessible interior region of phase
space will contract and approach the point v, = u,; and
A = m. At the value of E, for which the inaccessible
interior region vanishes, the average particle energy ceases
to decrease. The value of electric field amplitude necessary
for the disappearance of the interior region is

mMycwqg Aw
o X 2 —"Puy, —

el Wo ‘

43)

In Figs. 7 and 8 the actual positions of the particles in
phase space are shown at various times. The parameters
used for these figures are the same as those used in Fig. 6.
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Fig. 9. The distribution functions of the electron beam deformed by a
constant amplitude electric field at ¢ = f,, #4, £2.

Superimposed on the curves in Figs. 7 and 8§ are the
boundaries of the accessible region of the C = constant
curves. At r = 0, when the electric field is switched on, the
particles are uniformly distributed along the u, = u,, line
between 0 < A < 2z In the constant amplitude electric
field the particles proceed to bunch and rotate about the
interior boundary as shown in the figures. At ¢ = #; the
particles begin to overtake each other and bunch along the
right-hand side of the interior boundary. At a still later
time ¢ = t,, the particles rotate and bunch along the
bottom of the interior region. At this point the configuration
corresponds to the saturation state since the average
particle energy is at a minimum. The average kinetic energy
continues to oscillate as the particles rotate about the
interior boundary in a clockwise direction. The distribution
functions f,(u#,) corresponding to the phase space trajec-
tories in Figs. 7 and 8 are shown in Fig. 9. As can be seen
from Figs. 8 and 9, not all the particles are located at the
bottom of the interior boundary at saturation. Conse-
quently, the average of u, at saturation is not exactly given
by u, at the bottom of the interior region.

For sufficiently small values of E, the accessible C =
‘constant curves are open and particles are not trapped. As
E, is increased, the first particle to become trapped is
always the one initially located at (u,,,%). Trapping begins
when the particle at (u,,,7) has a closed orbit with turning
points at A = 2m and 0. At these turning points, di/dr
vanishes. Since the constant C is invariant along this closed
orbit and dA/dr vanishes at 4 = 2z and 0, we can obtain the
threshold value of E, for trapping from (41b) and (42). The
approximate value of the field amplitude for the onset of

trapping is given by
2 (Aco)
oL I
Wo

Using the constant of the motion in (42), the minimum

WoMyC

E, = (44)

4leluq,
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value of u, reached by the first trapped particle occurs at
A = 7 and is approximately
_ 2y0,° (A_ )
UpL \Wo

The corresponding minimum y for this particle is ) ., =
Yor — 2V01 Awg/wy. Consequently, the first trapped par-
ticle undergoes a change in y at 1 = & given by

(45)

Ui min = Uoy

Ay, = 2y0; Awylay. (46)

This expression for the maximum change in y allows us to
estimate the field amplitude at saturation as was done in
(39). The change in y given in (46) is identical to the value
found in (37), where a different line of reasoning was used.

VII. RESULTS

The nonlinear coupled equations (10a), (10b), (13a), and
(13b) are solved numerically for a wide range of parameters.
In each case the distribution function was represented by
approximately 40-100 test particles. The actual number of
particles used was determined by performing runs with
larger and larger numbers of particles until no discernible
difference appeared in the results. The conservation of both
total system energy and canonical y momentum was
monitored. The integration timesteps were adjusted to
maintain the conservation of both constants to within
0.5 percent over the duration of a run. As diagnostic aids,
plots of the test particle velocity distribution function,
velocity space, and phase space were made at various times
during the runs.

A run was initiated by uniformly distributing the particles
in the velocity space angle 0 < ¢, < 2r and assigning them
the same perpendicular velocity v, = vy,. A small
amplitude electric field was introduced as a perturbation
and allowed to grow self-consistently. From the results of
the single wave simulation runs, we have made composite
graphs of the transfer efficiency from particle kinetic energy
to wave electromagnetic energy at saturation as a function
of several parameters. A comparison between these results
and the analytic predictions in Section VI shows good
qualitative agreement.

We will now discuss the phase space dynamics for the two
saturation mechanisms discussed in Section VI. The
evolution of the particles in phase space and their distribu-
tion functions is shown when saturation occurs by 1) free
energy depletion and 2) phase trapping. In the free energy
depletion case the initial parameters are y,, = 1.012 =
Yicrie = 1.0108, p = 0.05, where u is a dimensionless
parameter related to the beam density through u =
co,,/(\/yol o), Wq = ¢k, = IQy/y,,, and I = n = 1. Fig.
10(a) and (b) shows the particle phase space in the course
of the instability when the growth is still linear. At satura-
tion, shown in Fig. 10(c), the particles indicate no phase
trapping. The average particle y, at saturation is within a
few percent of y, ;. However, the individual particles
energies have a large variation, as can be seen from the
distribution functions depicted in Fig. 11(b) and (c). The
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Fig. 10. The particle positions in phase space from a simulation of the
cyclotron maser instability in the case of saturation by energy
depletion. (a) ¢ = ¢,, linear phase. (b) ¢ = ¢,, nonlinear phase.
(c) t = t,, at saturation.
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Fig. 11. The distribution function of the electrons from a case of
saturation by energy depletion at various times as in Fig. 10.

predicted efficiency according to (34) is 5 = (y,, —
Y1 eri)/(Por — 1) = 10 percent. This is in excellent agree-
ment with the numerically evaluated efficiency of 10
percent. To illustrate case 2), where phase space trapping is
responsible for saturation, we choose the parameters
Yor = 1.2, 4 = 0.05. [Note thaty, .., = 1.0l for this case
as in case 1).] The particle dynamics in velocity phase space
and the velocity distribution function are shown at various
times 7 during the evolution of the run in Figs. 12 and 13.
In Fig. 12(a) the particles are shown at t = 250 when they
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Fig. 12. Particle positions in phase space from a simulation in the
case of saturation by trapping. (a) Linear phase. (b) Nonlinear
phase. (c) At saturation.
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Fig. 13. The distribution function for saturation by trapping for
times given in Fig. 12.

have begun to display some bunching but are relatively
close to their initial phase space positions. The corre-
sponding distribution function in Fig. 13(a) displays little
spread in velocity. When the nonlinear effects manifest
themselves by a change in the growth rate, the velocity
phase space bunching becomes distinctly visible and the
velocity distribution begins to spread as shown in Figs.
12(b) and 13(b). In Figs. 12(c) and 13(c), we show the
velocity phase space and distribution function at saturation.
The phase space plots in Figs. 12(b) and 12(c) show the
trapped electrons circulating and forming a tongue
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Fig. 15. The field amplitude and average beam » as a function of

time for a typical simulation.

configuration, similar to the one in Figs. 7 and 8, where a
constant electric field was present. The saturation mech-
anism for this case is clearly phase trapping of the beam
electrons in the wave. Because not all the electrons are
trapped, an average over the distribution function is
necessary to determine <y, >,. This necessitates the introduc-
tion of a numerical factor f in the simple expression
corresponding to (37):

Ay yilyor = 2f Aojw,.

The factor f'is a number on the order of unity and depends
on the fraction of deeply trapped particles f < 1.

As an example of a typical run, we shall follow the
evolution of field and particle quantities as a function of
time. The initial conditions chosen for this example are:
u = 0057y, = 105 w, = ck, = Qy/yp,and n = 1, and
U= co,,/(\/yOl ®,). In Fig. 14, the nonlinear frequency
shift and growth rate are shown as functions of the
normalized time parameter T = wot. Initially, for 7 < 150
when the field amplitude is small, we see a transient, during
which the perturbing field comes into equilibrium with the
particles. That is, initially the presence of the small
amplitude electric field is inconsistent with the initial
conditions of the beam particles. During the early transient
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Fig. 16. The efficiency of the cyclotron maser as a function of energy
found from the two mechanisms of saturation and from simulations.

the field and particles adjust themselves to self-consistently
satisfy (10a), (10b), (13a), and (13b). The transient regime
lasts for a time roughly given by 7., X wy/I';. The linear
regime 150 < © < 350 follows the initial transient. In this
regime the wave grows exponentially and both the growth
rate and frequency shift assume the values predicted by
linear theory. As will be apparent from one of our later
figures, the growth rates and frequency shifts in the linear
regime are in excellent agreement with those found from the
linear dispersion relation. The exponentially growing wave
attains a sufficiently high amplitude by v = 350 to start
nonlinearly affecting the particle dynamics, and the growth
rate begins to decrease until it reaches zero at 1 & 420 when
saturation occurs.

The nonlinear change in the growth rate is accompanied
by a less pronounced change in the frequency shift prior to
saturation. We find that for the parameters used in this
example at saturation, w, + a(1) — Qo/<{y,» = 0 in good
agreement with the qualitative argument in Section VL. The
normalized field amplitude, £4(t) = |e|Eo()/(mgcw,), and
the average perpendicular particle energy <y, are shown as
functions of 7 in Fig. 15.

We have found that the energy efficiency curves for a
given set of parameters always display a maximum. For
example, with g = 0.1, the efficiency curve shown in Fig. 16
has a peak of 40 percent when y,, = 1.1. The peak results
from the competition between the two saturation mech-
anisms described in Section VI. As can be seen in Fig. 16,
the efficiency curve has a cutoff at y, = y, o, = 1.0185.
The curves of the linear growth rates and frequency shifts,
obtained by numerically solving the linear dispersion
relation of (1) are shown in Fig. 17 as a function of yo,. The
linear growth rate curve shows a threshold at yo, = 1.0135,
identical to that in Fig. 17. Fig. 17 also shows a comparison
between the results of linear theory [see (1)], and of the
particle simulations in the linear regime. Clearly, the linear
growth rates and frequency shifts are in excellent agreement.
For beams that have initial energies characterized by
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Fig. 17. A comparison of the growth rate and phase shift predicted

by linear theory and the results from the linear portions of the
computer simulations.

0.0

Yoo 2 Vierir» We find that the excited wave extracts free
energy from the beam until <{y,> = y, ., and the system
becomes linearly stable without particle trapping taking
place. The simulations confirm this, since the velocity phase
space plots show no evidence of trapping at the time of
saturation when y,, 2 7, . In this regime a rough
expression for the average change in y, at saturation is

CAYLDs = Vo1 = Vi eric

and implies an efficiency monotomically increasing with
Yo.; this is shown as a dashed curve on Fig. 16. In the other
regime where o, » v, ., the saturation mechanism is
dominated by particle trapping and we find that {(Ay, >, =
2fyo1 Aw/w,. This implies an efficiency curve monotomically
decreasing with y,, as shown in Fig. 16 with f = 1. The two
saturation mechanisms described here predict an efficiency
maximum; this is also verified by the results of the particle
simulations.

Our saturation arguments show qualitative agreement
with the actual efficiency obtained numerically. In the
YoL > Y1,crie TEIMe we have arbitrarily set f = 1, implying
that all the particles are deeply trapped at saturation. From
Fig. 16 we see that in the intermediate regime fis closer to
1/2. Similar arguments hold in the y5, 2 y, .. regime. The
dashed curves in Fig. 16 show the competition between two
mechanisms leading to a maximum in the efficiency curves.

We now present the results of our nonlinear analysis for
a wide range of parameters. In Fig. 18, energy efficiency as
a function of y,, is shown for various values of u, pu =
0.025, 0.05, 0.15, and 0.35. In this figure the initial wave
frequency w, was set equal to ck, with n = 1. Furthermore,
the initial relativistic cyclotron frequency Qu/y,, was set
equal to ck,. These initial conditions on w,, ck,, and
Qo/70. were selected because they occur near the maximum
linear growth rate. All of the curves in Fig. 18 display a
maximum in efficiency in the beam frame as a function y, .
This characteristic of the curves has already been explained.
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Fig. 18. The beam frame efficiency of the electron cyclotron maser
as a function of energy for various densities when ck, = Qg/7q .
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Fig. 19. The beam frame efficiency of the electron cyclotron maser

when the cyclotron frequency is varied.

A further feature of the curves is that as p increases, y, .,
increases in agreement with the definition of §, ., given in
Section III. From Fig. 18 we also note that the efficiency
increases at low values of y,, as u is decreased. This
property of the curves can be explained by noting that as p

decreases, y, ., decreases, resulting in a sharp increase in

efficiency as a function of y,, near y, ;. The maximum
efficiency seems to level off at ~40 percent for low values
of yo., when wy = ck, = Qp/yo..

Dramatic increases in the efficiency can be realized in a
number of ways. For example, by slightly mistuning the
relativistic cyclotron frequency away from w, = ck,,
electron phase trapping can be postponed and higher
efficiencies realized. In the regime where electron trapping
is responsible for saturation, we have shown that the
efficiency is roughly 2fy9 (we + A®w — Qu/v0 )/(¥o. — D).
By choosing w, > Q,/y,,, we can expect the efficiency to
increase. In Fig. 19 the efficiency is shown as a function of
(Qo/yo)/we for various values of u and y,,. The values for
u and y,, were taken from the maximum efficiency points
in Fig. 18. Fig. 19 shows clearly that higher efficiencies can
be realized for (Q,/y,,)/w, less than unity. Since sufficiently
small values of (Q¢/y0.)/®, lie outside the growth rate
spectrum, the efficiency drops to zero. By mistuning the
magnetic field, the efficiency was increased from 40 to 63
percent in the beam frame for the case ¢ = 0.1 and y,, =
1.155,

The efficiency can also be increased by varying the external
magnetic field in time in such a way that o — Qu(7)/<y. (7))
is held fixed. This procedure is similar to the mistuning
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approach discussed, in-that electron phase trapping is
postponed. Choosing u = 0.1, y,, = 1.1, and changing
the magnetic field in time such that (o — Qu(7)/<y.(7))) is
fixed at its initial value of 0.034, an efficiency of =70
percent was realized. This compares with an efficiency of
~40 percent when the magnetic field was held fixed at
Qo/yoL = wo = cky.

VIII. DISCUSSION AND EXAMPLE

We have shown that the electron cyclotron maser
mechanism can be an efficient method of producing short
. wavelength radiation. The mechanism seems particularly
attractive for the generation of submillimeter radiation when
higher cyclotron harmonics are considered. Preliminary
results at high cyclotron harmonics and also higher
waveguide modes indicate that the efficiency remains
relatively high. These results, on the higher harmonics, will
be published in a forthcoming paper. ’

Experiments on the cyclotron maser using intense
relativistic electron beams'®~!? have produced efficiencies
of less than 2 percent. The low experimental efficiencies are
in good agreement with our theoretical results and are the
result of the following. 1) The transformation of efficiency
factor from the beam frame to the laboratory frame, i.e.,

Yo(vor' — D/(yos'(vo — 1)) [see (B7)], was typically small,

<0.3. 2) The value of y,, in the beam frame was not

optimized for maximum efficiency (see Fig. 18). 3) The
method used to produce transverse energy also introduced
temperature in the beam distribution [see (28), (31), and
(32)]. The combination of these effects led to the low
observed efficiencies. With our improved understanding of
the saturation levels and mechanisms, efficiencies can be
substantially improved.

As an illustration of the beam and waveguide parameters
needed to generate electromagnetic radiation at 1.0 cm, we
consider the following detailed example. Referring to Fig.
2, we choose @ = 0.25cm and L = 27n(24) = 3.14 cm. The
waveguide width L corresponds to the circumference of a
cylindrical guide having a radius equal to 2a4. In the
laboratory frame we have a cold electron beam with a total
energy of V' = 300 keV per particle. The electron velocity
is partitioned such that v,y = 0.69¢ and vy, = 0.36c.
Therefore, the total y of the beam electrons is

Yo = (1 - (Uou/c)2 — (vu/e))™1? = 1.59
and
Yoy = (1 — (Uou/C)Z)-l/Z = 1.37.

With a magnetic field B, = 11.4 kG, the electron Larmor
radius is r; = vy, /(le|Bo/yogc) = 0.34a = 0.085 cm.
Taking the axial current to be 7 = 860 A, with the beam
thickness equal to twice the Larmor radius and beamwidth
equal to L, we obtain a beam density in the laboratory
frame of n, = I/(lelvy(2r L)) = 2.6 x 10'' cm™>. The
electron surface density is given by o, = n,(2r;) = 4.42 x
10'° ¢cm 2.

'Now in the beam frame, vy, = 0, hence, y,," =
(1 = (vo,J))™1* = Yolvoy = 1.155 and w,," = (I —
(o0 " HY? = 0.5¢. The electron surface density in the

beam frame becomes " = 6470, /7o = 3.2 x 10'° cm ™2,
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which determines the modified plasma frequency w,’ =
(4nle)®oy [(mea)’* = 2.02 x 10'° s~'. To obtain the
efficiency in the beam frame ', we need u’ as well as
(Qo/70.")/(ck,). To continue, we find that Qyfy,, =
le|Bo/ (Yo, 'moc) = 1.75 x 10" s7%, ck, = 1.88 x 10" s7*
and (Qo/yo.)(ck,) = 0.93. Now ' = (@y'/N70.)@’ =
0.1, since w,’ is set equal to the cutoff frequency ck,. From
Fig. 14 we find that for u' = 0.1, 9o, = 1.155, and
(Qo/v0.)]wo = 0.93 the efficiency in the beam frame is
#' = 63 percent. Using (B7) of Appendix B, the efficiency
in the laboratory frame is § = #'yo(yor' — /(7o' (yo —
1)) = 22 percent. Since the beam power in the laboratory
frame is P, = IV = 258 MW, the radiated power becomes
P, = yP, = 57 MW. The spread in y,’ in the beam frame
due to the seif-electrostatic fields can be estimated from
(32). We find from (32) that 8y,’ c.i¢/¥o." = 0.0036. From
(25) we see that the initial spread in y,’ can be neglected if
it satisfies the following requirement, 8y " /yo.” < 21’ (Yo" —
Dyo.” = 0.17. Clearly, in this example, the spread in y,’
due to self-fields can be neglected.

The possibility of high efficiency and power levels at
millimeter and submillimeter wavelengths with the electron
cyclotron maser makes it an attractive device for plasma
heating. The frequencies required for heating at either the
electron cyclotron or upper hybrid frequency are in excess
of 120 GHz (A = 2.5 mm) for reactor-type Tokomaks [28].
The cyclotron maser appears to be the only viable source
for producing the required power efficiently at such high
frequencies. Plasma heating using cyclotron maser devices
has been demonstrated in the USSR on the TM-3 Tokomak
[29]. In these experiments the clectron cyclotron resonance
at A = 5 mm was used. It has been estimated that an
experimental power reactor would require ~ 100-250 MJ of
supplemental heating in 2-6 s [30]. This is a continuous
wave requirement of <50 MW at a frequency of 280 GHz
(A = 1.07 mm), assuming electron cyclotron heating and
the reactor parameters of [30]. On a large device these
requirements may be achieved by employing several maser
devices simultaneously. \

APPENDIX A

The linear dispersion relation can be recovered from the
self-consistent nonlinear equations derived in Section III
[see (1) and (13)]. To facilitate the calculation, we take the
limit where the Larmor radius of the electrons is small
compared to the characteristic transverse scale length over
which the fields vary, nx « a. In this approximation the
fields take the simplified form E, = Ey(t) cos (wot + a(t))
and B, = 0, where the x dependence has been removed
because in the small Larmor radius limit, k,(x — a) & nx/a.
In the linear approximation the magnitude of the particle
velocity f,(¢) and rotational frequency (¢) are expanded as

Bu(t) = Boy + BV
Y(t) = Qofror + Y@)

where 8, « By, and ¥ « Q,/y,, are slowly varying
functions of time and are linear in the wave amplitude
Ey(¢). In this regime it is appropriate to set Ey(f) = g

(AD)



" SPRANGLE AND DROBOT: ELECTRON CYCLOTRON MASER INSTABILITY

exp (I';#) and or) = Awgr where T'; < w, is the linear
growth rate and Aw; < w, is the linear frequency shift,
Substituting (Al) into the orbit equations (13), we obtain
the following slow time scale equations:

8,00 = 1™ G wr + o)

A2
2y0.°myc (A2
1) — QO 20 (1)
Yty = — — Borvo*B. V()
You
Tt
lelea ™ o5 Goot + dg)  (A3)
2Bo1y01m0¢

where dw = wy — Qq/yo, + Aw;. In (A3) the approxima-
tion y,(t) = yo;, + Borvor BLY(¢) is used. The linearized
expression for the y component of particle velocity is

v,(t) = cfy, sin (E-Qt + ¢0)

Yoy

+eB,M(1) sin (29 t+ ¢0)

Yor
t Q
+cﬁ0lf Y (") dt’ cos (——9 f+ d)o) .
0 Yor

Solving (A2) and (A3) for times much longer than a growth
time, ¢ > /T, yields

. 0 |eI80eFLt
(1) = cfy, sin (—91 + ¢o) Y
y YoL 4yo1moD?
1 2
: {((,1_) T ‘5"’?) cos &t
Yol Your
2 21,2
b (20D 5 2 R0 @0 T o )
Yoi YoL D
(A4)

where & = wo + Aw;, D* = §w? + T2 and [t yP(r")
dt' « 1. The equations governing the frequency shift and
growth rate [see (10a) and (10b)] in the linear approxima-
tion become

(0o — Pk,2 + 200 Awy)eg exp (I'yt) = ~ 2leloq )
na

t+2n/d 2m
. f dr’ f dpov(o,t") sin @t'  (ASa)
t

0

e|o ~
worLSO EXp (FLI) = '|—;I[—‘a—0 wow

t+2n/@ 2n
: f dr’ f dpov,(bost’) cos dt’ (ASb)
t

4]

where v (¢o.1) is given by (A4). Since Aw,/w,, T;/w, « 1
and w, & ck,, we approximate wo® + c’k,* by 2w,? on
the right-hand side of (A5). By multiplying (A5b) by V= 1,
adding it to (AS5a), and performing the integrals over ¢’ and
¢, We arrive at the linear dispersion relation
(CDZ —_ czk 2) = _(P.b_.z_(_o
2y01 .
. ﬂOJ.z @

2 (o~ QO/VOL)Z

' ((w - slzo/m ) (A9
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where w = wy + Aw; + iT';. This result is identical to the
dispersion relation given by (1) for waves of zero wave
number, when vy, < (aQq/yo.)/n.

APPENDIX B

One of the objectives of this paper is to determine the
efficiency of electromagnetic energy flux radiated by a beam
undergoing the electron cyclotron maser instability. The
general law governing the laboratory frame efficiency of
conversion of beam to electromagnetic power in terms of
beam frame energy efficiency is derived.

The analysis in the body of the text has been performed
in a rather special frame in which beam axial velocity vy,
and wave group velocity v, both vanish. The justification
for choosing this frame is that the growth rate maximizes
when vy, = v,; therefore, by transforming to the beam
frame, the axial beam velocity and the wave group velocity
vanish simultaneously. In the beam frame the wave is at
cutoff having an infinite axial wavelength &k, = 0. In what
follows the two frames are distinguished by denoting beam
frame variables by primed quantities and laboratory
variables by unprimed quantities. The notation in this
Appendix should not be confused with that in the text
where unprimed quantities refer to the beam frame.

In the laboratory frame the axial electromagnetic energy
flux density S, = (¢/4n}(E x B)- ¢, is found by a Lorentz
transformation of the beam frame fields [derivable from
(6)] and takes the form

¢ ’ ’ ’ .
S, = 27—!: ’}’o|l250||(E0 (¢) cos (wo't + o) sin k,(x — a))2
(B1)
where oy = voy/c, vo is the axial beam velocity in the

laboratory frame and 74, = (1 — Boy*)~'/%. Using (Bl),
the temporal and spatial average of the electromagnetic
power in the laboratory frame, flowing normal to the
cross-sectional area 2qL, is

c !

Py = —yo*Boy(Ey’)aL (B2)

8n
where L is the length of the waveguide as shown in Fig. 2.
From conservation of field and particle energy [see (16)],

we obtain an expression for the maximum electric field,
occurring at saturation, in the beam frame:

Eo = N2 Bo'(@o' /(Q Jy01"))!?
'()’OL - <YL,>S)1/2(VOL,)—1/2'

Expressing the electric field amplitude at saturation [see
(B3)] in terms of the beam frame energy efficiency, n’ =
(Yo' — <y >s)/(yo” — 1), and substituting it into (B2)
gives for the radiated power in the laboratory frame

(Yo' — 1)

I3

(B3)

Wy’
Q' f701]

The efficiency of conversion of beam to electromagnetic
power in the laboratory frame is

’1=Pf/Pb

¢ , /
Py = y Vo1 *BoyBo* (W')? aln'. (B4)

Yol

(BS)



544

where P, = oLcfoy(yo — Dmgc? is the bedm power, % is
the particle surface density, and y, = (I — g% —
Bo.?)~ 1%, Combining (B4) and (BS) and using the relation-
ship a(Bou')?wy'[(dnmec’Qy’) = a,’, we obtain
o_ ’ ’ — l ,

o Yonz (Yor ) "

9o (o — 1)
Applying the relativistic transformations oo = 04'yo/70L’
and yo = 7Y0/70." to (B6), the power efficiency takes the
simple form

n = (B6)

— VO(YO_L/ — 1) (B7)
Yo' (Yo — 1)

For a more direct derivation of (B7), we consider the
relativistic Lorentz transformation of total field energy in
the beam frame to the laboratory frame. Since the field
momentum in the beam frame is zero, we have

W, = Yo Wf/ = )’on’?’Wb' (B3)

where W, and W, are the total field and particle energy in
the laboratory frame. The power in the electromagnetic
field can be written as

Py = v \Wy/Az = voyn'Wy'[Az (B9)

where Az is the axidl extent of the volume element which
contains the total field energy W,. The total beam energy
W,’ in the beam frame can be written as

W, = ’1bl()’or) - l)mOCZAAZ/ (B10)

where 4 = 2r L is the cross-sectional area of the beam and
Az’ is the axial extent of the volume element in the beam
frame. Substituting (B10) into (B9) and using the relation-
ships 1," Az’ = 1, Az and yo = yo/70, yields the result

_ Yo(You' = 1)
Yo' (o — 1)
which defines the efficiency transformation in (B7).

Py
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